{"title":"Global exponential stabilization of the linearized Korteweg-de Vries equation with a state delay","authors":"Habib Ayadi, Mariem Jlassi","doi":"10.1093/imamci/dnad016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, well-posedness and global boundary exponential stabilization problems are studied for the one-dimensional linearized Korteweg-de Vries equation (KdV) with state delay, which is posed in bounded interval $[0,2\\pi ]$ and actuated at the left boundary by Dirichlet condition. Based on the infinite-dimensional backstepping method for the delay-free case, a linear Volterra-type integral transformation maps the system into another homogeneous target system, and an explicit feedback control law is obtained. Under this feedback, we prove the well-posedness of the considered system in an appropriate Banach space and its exponential stabilization in the topology of $L^{2}(0,2\\pi )$-norm by the use of an appropriate Lyapunov–Razumikhin functional. Moreover, under the same feedback law, we get the local exponential stability for the non-linear KdV equation. A numerical example is provided to illustrate the result.","PeriodicalId":56128,"journal":{"name":"IMA Journal of Mathematical Control and Information","volume":"1 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Mathematical Control and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imamci/dnad016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, well-posedness and global boundary exponential stabilization problems are studied for the one-dimensional linearized Korteweg-de Vries equation (KdV) with state delay, which is posed in bounded interval $[0,2\pi ]$ and actuated at the left boundary by Dirichlet condition. Based on the infinite-dimensional backstepping method for the delay-free case, a linear Volterra-type integral transformation maps the system into another homogeneous target system, and an explicit feedback control law is obtained. Under this feedback, we prove the well-posedness of the considered system in an appropriate Banach space and its exponential stabilization in the topology of $L^{2}(0,2\pi )$-norm by the use of an appropriate Lyapunov–Razumikhin functional. Moreover, under the same feedback law, we get the local exponential stability for the non-linear KdV equation. A numerical example is provided to illustrate the result.
期刊介绍:
The Journal is to provide an outlet for papers which are original and of high quality in mathematical control theory, systems theory, and applied information sciences. Short papers and mathematical correspondence or technical notes will be welcome, although the primary function of the journal is to publish papers of substantial length and coverage. The emphasis will be upon relevance, originality and clarify of presentation, although timeliness may well be an important feature in acceptable papers. Speculative papers that suggest new avenues for research or potential solutions to unsolved problems of control and information theory will be particularly welcome. Specific application papers will not normally be within the remit of the journal. Applications that illustrate techniques or theories will be acceptable. A prime function of the journal is to encourage the interplay between control and information theory and other mathematical sciences.
All submitted papers will be judged on their merits by at least two referees and a full paper report will be available to the intending authors. Submitted articles will in general be published in an issue within six months of submission. Papers should not have previously published, nor should they be undes consideration for publication in another journal. This Journal takes publication ethics very seriously. If misconduct is found or suspected after the manuscript is published, the journal will investigate the matter and this may result in the article subsequently being retracted.