Ramadan M. El-Kahawy, Nabil Aboul-Ela, Ahmed N. El-Barkooky, Walid G. Kassab
{"title":"Bio-sequence stratigraphy of the Neogene: an example from El-Wastani gas field, onshore Nile Delta, Egypt","authors":"Ramadan M. El-Kahawy, Nabil Aboul-Ela, Ahmed N. El-Barkooky, Walid G. Kassab","doi":"10.5194/jm-42-147-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Due to modern hydrocarbon development and exploration activities throughout the onshore Nile Delta of Egypt, a high-resolution biochronologic sequence stratigraphy of the Neogene sequence was conducted to illustrate the gas-bearing reservoirs' depositional sequences. Our study used a multidisciplinary approach comprising biostratigraphy, facies analysis, geophysical logs, and seismic data to shed light on the Neogene stratigraphic framework. The biostratigraphic analysis of planktonic foraminifera and calcareous nannofossils allowed the recognition of six zones and/or subzones and nine zones, respectively. An open-shelf environment was suggested for the Middle–Upper Miocene Sidi Salem Formation, while the Upper Miocene Qawasim and Abu Madi formations were deposited under stressed environmental conditions interpreted as estuary facies. The Lower Pliocene (Zanclean) succession deposited in the middle to outer shelf domains, including the upper-bathyal environments. Seven depositional sequences bounded by six major sequence boundaries were recognized from Serravallian to Zanclean times. These boundaries significantly influenced changes in reservoir properties and architecture of the incised valley fills. The sea-level oscillations are interpreted by correlating the sequence boundaries and flooding surfaces with global eustatic charts.","PeriodicalId":54786,"journal":{"name":"Journal of Micropalaeontology","volume":"15 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micropalaeontology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/jm-42-147-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Due to modern hydrocarbon development and exploration activities throughout the onshore Nile Delta of Egypt, a high-resolution biochronologic sequence stratigraphy of the Neogene sequence was conducted to illustrate the gas-bearing reservoirs' depositional sequences. Our study used a multidisciplinary approach comprising biostratigraphy, facies analysis, geophysical logs, and seismic data to shed light on the Neogene stratigraphic framework. The biostratigraphic analysis of planktonic foraminifera and calcareous nannofossils allowed the recognition of six zones and/or subzones and nine zones, respectively. An open-shelf environment was suggested for the Middle–Upper Miocene Sidi Salem Formation, while the Upper Miocene Qawasim and Abu Madi formations were deposited under stressed environmental conditions interpreted as estuary facies. The Lower Pliocene (Zanclean) succession deposited in the middle to outer shelf domains, including the upper-bathyal environments. Seven depositional sequences bounded by six major sequence boundaries were recognized from Serravallian to Zanclean times. These boundaries significantly influenced changes in reservoir properties and architecture of the incised valley fills. The sea-level oscillations are interpreted by correlating the sequence boundaries and flooding surfaces with global eustatic charts.
期刊介绍:
The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny.