{"title":"On the natal kick of the black hole X-ray binary H 1705–250","authors":"Cordelia Dashwood Brown, Poshak Gandhi, Yue Zhao","doi":"10.1093/mnrasl/slad151","DOIUrl":null,"url":null,"abstract":"ABSTRACT When a compact object is formed, an impulse (kick) will be imparted to the system by the mass lost during the core-collapse supernova (SN). A number of other mechanisms may impart an additional kick on the system, although evidence for these natal kicks in black hole systems remains limited. Updated Gaia astrometry has recently identified a number of high peculiar velocity (in excess of Galactic motion) compact objects. Here, we focus on the black hole low-mass X-ray binary H 1705−250, which has a peculiar velocity $\\upsilon _{\\mathrm{pec}}\\, =\\, 221^{+101}_{-108}\\, \\,\\mathrm{km}\\, \\mathrm{s}^{-1}$. Using population synthesis to reconstruct its evolutionary history (assuming formation via isolated binary evolution within the Galactic plane), we constrain the properties of the progenitor and pre-SN orbit. The magnitude of a kick solely due to mass-loss is found to be ∼30 km s−1, which cannot account for the high present-day peculiar motion. We therefore deduce that the black hole received an additional natal kick at formation, and place limits on its magnitude, finding it to be ∼295 km s−1 (minimum 90 km s−1). This furthers the argument that these kicks are not limited to neutron stars.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT When a compact object is formed, an impulse (kick) will be imparted to the system by the mass lost during the core-collapse supernova (SN). A number of other mechanisms may impart an additional kick on the system, although evidence for these natal kicks in black hole systems remains limited. Updated Gaia astrometry has recently identified a number of high peculiar velocity (in excess of Galactic motion) compact objects. Here, we focus on the black hole low-mass X-ray binary H 1705−250, which has a peculiar velocity $\upsilon _{\mathrm{pec}}\, =\, 221^{+101}_{-108}\, \,\mathrm{km}\, \mathrm{s}^{-1}$. Using population synthesis to reconstruct its evolutionary history (assuming formation via isolated binary evolution within the Galactic plane), we constrain the properties of the progenitor and pre-SN orbit. The magnitude of a kick solely due to mass-loss is found to be ∼30 km s−1, which cannot account for the high present-day peculiar motion. We therefore deduce that the black hole received an additional natal kick at formation, and place limits on its magnitude, finding it to be ∼295 km s−1 (minimum 90 km s−1). This furthers the argument that these kicks are not limited to neutron stars.
期刊介绍:
For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.