{"title":"Handling Class Imbalance in Google Cluster Dataset Using a New Hybrid Sampling Approach","authors":"Jyoti Shetty, G. Shobha","doi":"10.12720/jait.14.5.934-940","DOIUrl":null,"url":null,"abstract":"—Class imbalance is a classical problem in data mining, where the classes in a dataset have a disproportionate number of instances. Most machine learning tasks fail to work properly with an imbalanced dataset. There exist various approaches to balance a dataset, but suffer from issues such as overfitting and information loss. This manuscript proposes a novel and improved cluster-based undersampling method for handling two and multi-class imbalanced dataset. Ensemble learning algorithm integrated with the pre-processing technique is used to address the class imbalance problem. The proposed approach is tested using a publicly available imbalanced Google cluster dataset, in case of imbalanced dataset the F1-score value for each class has to be checked, it is observed that the existing approaches F1-score for class 0 was not good, whereas the proposed algorithm had a balanced F1-score of 0.97 for class 0 and 0.96 for class 1. There is an improvement in F1-score of about 2% compared to the existing technique. Similarly for multi-class problem the proposed novel algorithm gave balanced AUC values of 0.87, 0.83 and 0.97 for class 0, class 1 and class 2 respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.5.934-940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
—Class imbalance is a classical problem in data mining, where the classes in a dataset have a disproportionate number of instances. Most machine learning tasks fail to work properly with an imbalanced dataset. There exist various approaches to balance a dataset, but suffer from issues such as overfitting and information loss. This manuscript proposes a novel and improved cluster-based undersampling method for handling two and multi-class imbalanced dataset. Ensemble learning algorithm integrated with the pre-processing technique is used to address the class imbalance problem. The proposed approach is tested using a publicly available imbalanced Google cluster dataset, in case of imbalanced dataset the F1-score value for each class has to be checked, it is observed that the existing approaches F1-score for class 0 was not good, whereas the proposed algorithm had a balanced F1-score of 0.97 for class 0 and 0.96 for class 1. There is an improvement in F1-score of about 2% compared to the existing technique. Similarly for multi-class problem the proposed novel algorithm gave balanced AUC values of 0.87, 0.83 and 0.97 for class 0, class 1 and class 2 respectively.