K. Daqrouq, A. Hazazi, A. Alkhateeb, R.A. Alharbey
{"title":"Heart rate measurement using image recognition technology","authors":"K. Daqrouq, A. Hazazi, A. Alkhateeb, R.A. Alharbey","doi":"10.14311/nnw.2023.33.016","DOIUrl":null,"url":null,"abstract":"The measurement of heart rate (HR) has numerous applications in various fields, such as the internet of things, security, sports, and telemedicine. There are many methods for measuring pulse rates, and this research is based on a novel technique of measuring the heartbeat using image recognition technology. The innovations in the field of visual objects have made the detection process easy and quick, with high efficiency. Four step-based algorithms, including a computer, an external high-definition camera, and an open-source computer vision library, have been presented for measuring heart rate. The first step was the face detection (FD) algorithm, and the second was the area attention algorithm to determine the region of interest (ROI). The ROI signal analysis algorithm was used in the third step, using a fast Fourier transform (FFT) for frequency detection. The pulse measurement phase was the final step, and it was based on the strength of the color concentration in proportion to the time extracted from video clips. With the help of our recorded database of 50 participants based on different ages and skin colors, the process was carried out. The results of this study contributed to the development of an HR detection technique based on image recognition using the Python programming language. This is a very comfortable and effective method for measuring the human heart rate. This research article discussed various factors and obstacles that affect heart rate measurement. The results found that our system is highly competent in measuring heart rate.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"27 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of heart rate (HR) has numerous applications in various fields, such as the internet of things, security, sports, and telemedicine. There are many methods for measuring pulse rates, and this research is based on a novel technique of measuring the heartbeat using image recognition technology. The innovations in the field of visual objects have made the detection process easy and quick, with high efficiency. Four step-based algorithms, including a computer, an external high-definition camera, and an open-source computer vision library, have been presented for measuring heart rate. The first step was the face detection (FD) algorithm, and the second was the area attention algorithm to determine the region of interest (ROI). The ROI signal analysis algorithm was used in the third step, using a fast Fourier transform (FFT) for frequency detection. The pulse measurement phase was the final step, and it was based on the strength of the color concentration in proportion to the time extracted from video clips. With the help of our recorded database of 50 participants based on different ages and skin colors, the process was carried out. The results of this study contributed to the development of an HR detection technique based on image recognition using the Python programming language. This is a very comfortable and effective method for measuring the human heart rate. This research article discussed various factors and obstacles that affect heart rate measurement. The results found that our system is highly competent in measuring heart rate.
期刊介绍:
Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of:
brain science,
theory and applications of neural networks (both artificial and natural),
fuzzy-neural systems,
methods and applications of evolutionary algorithms,
methods of parallel and mass-parallel computing,
problems of soft-computing,
methods of artificial intelligence.