{"title":"Uniqueness in an inverse problem of fractional elasticity","authors":"Giovanni Covi, Maarten de Hoop, Mikko Salo","doi":"10.1098/rspa.2023.0474","DOIUrl":null,"url":null,"abstract":"We study a nonlinear inverse problem for fractional elasticity. In analogy to the classical problem of linear elasticity, we consider the unique recovery of the Lamé parameters associated with a linear, isotropic fractional elasticity operator from fractional Dirichlet-to-Neumann data. In our analysis, we make use of a fractional matrix Schrödinger equation via a generalization of the so-called Liouville reduction to the case of fractional elasticity. We conclude that unique recovery is possible if the Lamé parameters agree and are constant in the exterior, and their Poisson ratios agree everywhere. Our study is motivated by the significant recent activity in the field of nonlocal elasticity.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"36 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0474","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 4
Abstract
We study a nonlinear inverse problem for fractional elasticity. In analogy to the classical problem of linear elasticity, we consider the unique recovery of the Lamé parameters associated with a linear, isotropic fractional elasticity operator from fractional Dirichlet-to-Neumann data. In our analysis, we make use of a fractional matrix Schrödinger equation via a generalization of the so-called Liouville reduction to the case of fractional elasticity. We conclude that unique recovery is possible if the Lamé parameters agree and are constant in the exterior, and their Poisson ratios agree everywhere. Our study is motivated by the significant recent activity in the field of nonlocal elasticity.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.