Time-reversible dynamics in a system of two coupled active rotators

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2023-10-01 DOI:10.1098/rspa.2023.0401
Oleksandr Burylko, Matthias Wolfrum, Serhiy Yanchuk, Jürgen Kurths
{"title":"Time-reversible dynamics in a system of two coupled active rotators","authors":"Oleksandr Burylko, Matthias Wolfrum, Serhiy Yanchuk, Jürgen Kurths","doi":"10.1098/rspa.2023.0401","DOIUrl":null,"url":null,"abstract":"We study two coupled active rotators with Kuramoto-type coupling and focus our attention to specific transitional regimes where the coupling is neither attractive nor repulsive. We show that certain such situations at the edge of synchronization can be characterized by the existence of a time-reversal symmetry of the system. We identify two different cases with such a time-reversal symmetry. The first case is characterized by a non-reciprocal attractive/repulsive coupling. The second case is a reciprocal coupling exactly at the edge between attraction and repulsion. We give a detailed description of possible different types of dynamics and bifurcations for both cases. In particular, we show how the time-reversible coupling can induce both oscillation death and oscillation birth to the active rotators. Moreover, we analyse the coexistence of conservative and dissipative regions in phase space, which is a typical feature of systems with a time-reversal symmetry. We show also, how perturbations breaking the time-reversal symmetry and destroying the conservative regions can lead to complicated types of dissipative dynamics such as the emergence of long-period cycles showing a bursting-like behaviour.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"52 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0401","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We study two coupled active rotators with Kuramoto-type coupling and focus our attention to specific transitional regimes where the coupling is neither attractive nor repulsive. We show that certain such situations at the edge of synchronization can be characterized by the existence of a time-reversal symmetry of the system. We identify two different cases with such a time-reversal symmetry. The first case is characterized by a non-reciprocal attractive/repulsive coupling. The second case is a reciprocal coupling exactly at the edge between attraction and repulsion. We give a detailed description of possible different types of dynamics and bifurcations for both cases. In particular, we show how the time-reversible coupling can induce both oscillation death and oscillation birth to the active rotators. Moreover, we analyse the coexistence of conservative and dissipative regions in phase space, which is a typical feature of systems with a time-reversal symmetry. We show also, how perturbations breaking the time-reversal symmetry and destroying the conservative regions can lead to complicated types of dissipative dynamics such as the emergence of long-period cycles showing a bursting-like behaviour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两个耦合主动旋转器系统的时间可逆动力学
我们研究了两个具有kuramoto型耦合的耦合主动旋转体,并将注意力集中在耦合既不吸引也不排斥的特定过渡状态上。我们证明了在同步边缘的某些情况可以用系统的时间反转对称性的存在来表征。我们用这种时间反转对称性确定了两种不同的情况。第一种情况的特征是非互易的吸引/排斥耦合。第二种情况是在引力和斥力之间的边缘处的互反耦合。我们给出了两种情况下可能的不同类型的动力学和分岔的详细描述。特别地,我们展示了时间可逆耦合如何诱导主动旋转器的振荡死亡和振荡产生。此外,我们还分析了保守区和耗散区在相空间中的共存,这是具有时间反转对称性的系统的一个典型特征。我们还展示了打破时间反转对称性和破坏保守区域的扰动如何导致复杂类型的耗散动力学,例如出现具有爆发样行为的长周期周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
期刊最新文献
In silico modelling of mechanical response of breast cancer cell to interstitial fluid flow Quasi-static responses of marine mussel plaques detached from deformable wet substrates under directional tensions A mathematical model of the Bray–Liebhafsky reaction A tensor density measure of topological charge in three-dimensional nematic phases Isospectral open cavities and gratings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1