Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John C.S. Lui, Don Towsley, Danny H.K. Tsang
{"title":"The Online Knapsack Problem with Departures","authors":"Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John C.S. Lui, Don Towsley, Danny H.K. Tsang","doi":"10.1145/3606376.3593576","DOIUrl":null,"url":null,"abstract":"The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case optimized algorithms, we also propose a data-driven online algorithm that can achieve near-optimal average performance under typical instances while guaranteeing the worst-case performance.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606376.3593576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case optimized algorithms, we also propose a data-driven online algorithm that can achieve near-optimal average performance under typical instances while guaranteeing the worst-case performance.