Nearly Unstable Integer‐Valued ARCH Process and Unit Root Testing

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2023-10-19 DOI:10.1111/sjos.12689
Wagner Barreto-Souza, Ngai Hang Chan
{"title":"Nearly Unstable Integer‐Valued ARCH Process and Unit Root Testing","authors":"Wagner Barreto-Souza, Ngai Hang Chan","doi":"10.1111/sjos.12689","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a Nearly Unstable INteger‐valued AutoRegressive Conditional Heteroscedastic (NU‐INARCH) process for dealing with count time series data. It is proved that a proper normalization of the NU‐INARCH process weakly converges to a Cox–Ingersoll–Ross diffusion in the Skorohod topology. The asymptotic distribution of the conditional least squares estimator of the correlation parameter is established as a functional of certain stochastic integrals. Numerical experiments based on Monte Carlo simulations are provided to verify the behavior of the asymptotic distribution under finite samples. These simulations reveal that the nearly unstable approach provides satisfactory and better results than those based on the stationarity assumption even when the true process is not that close to nonstationarity. A unit root test is proposed and its Type‐I error and power are examined via Monte Carlo simulations. As an illustration, the proposed methodology is applied to the daily number of deaths due to COVID‐19 in the United Kingdom.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/sjos.12689","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper introduces a Nearly Unstable INteger‐valued AutoRegressive Conditional Heteroscedastic (NU‐INARCH) process for dealing with count time series data. It is proved that a proper normalization of the NU‐INARCH process weakly converges to a Cox–Ingersoll–Ross diffusion in the Skorohod topology. The asymptotic distribution of the conditional least squares estimator of the correlation parameter is established as a functional of certain stochastic integrals. Numerical experiments based on Monte Carlo simulations are provided to verify the behavior of the asymptotic distribution under finite samples. These simulations reveal that the nearly unstable approach provides satisfactory and better results than those based on the stationarity assumption even when the true process is not that close to nonstationarity. A unit root test is proposed and its Type‐I error and power are examined via Monte Carlo simulations. As an illustration, the proposed methodology is applied to the daily number of deaths due to COVID‐19 in the United Kingdom.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近不稳定整值ARCH过程与单位根检验
摘要介绍了一种处理计数时间序列数据的近不稳定整值自回归条件异方差(NU - INARCH)处理方法。证明了NU - INARCH过程的适当归一化在Skorohod拓扑上弱收敛为Cox-Ingersoll-Ross扩散。建立了相关参数的条件最小二乘估计的渐近分布,并给出了相关参数的条件最小二乘估计是若干随机积分的泛函。给出了基于蒙特卡罗模拟的数值实验,验证了有限样本下渐近分布的性质。这些模拟结果表明,即使真实过程不太接近非平稳,近似不稳定方法也比基于平稳假设的方法提供了令人满意和更好的结果。提出了一种单位根检验方法,并通过蒙特卡罗模拟检验了其I型误差和功率。作为一个例子,建议的方法适用于英国因COVID - 19导致的每日死亡人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1