Polydatin inhibited TNF-α-induced apoptosis of skeletal muscle cells through AKT-mediated p38 MAPK and NF-κB pathways

IF 1.3 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY General physiology and biophysics Pub Date : 2023-01-01 DOI:10.4149/gpb_2023027
Yongli Liu, Fang Xie, Changhuai Lu, Zongbo Zhou, Shudong Li, Jia Zhong, Qian Li, Xianfang Shao
{"title":"Polydatin inhibited TNF-α-induced apoptosis of skeletal muscle cells through AKT-mediated p38 MAPK and NF-κB pathways","authors":"Yongli Liu, Fang Xie, Changhuai Lu, Zongbo Zhou, Shudong Li, Jia Zhong, Qian Li, Xianfang Shao","doi":"10.4149/gpb_2023027","DOIUrl":null,"url":null,"abstract":"Skeletal muscle atrophy severely impacts one's quality of life. The effects and mechanism of polydatin on skeletal muscle atrophy are unclear. This study investigated the effects and mechanism of polydatin on TNF-α-induced skeletal muscle cells. The skeletal muscle cell atrophy model was established by inducing C2C12 cells with TNF-α. Cell viability, IL-1β levels and cell apoptosis were assessed. The mRNA and protein expression levels of apoptosis-related proteins were measured. Meanwhile, the binding of polydatin to AKT was analyzed by molecular docking. TNF-α reduced cell fusion and viability while up-regulated IL-1β level and promoted cell apoptosis. TNF-α activated AKT, NF-κB, and p38 MAPK signaling pathways. Polydatin reversed these effects induced by TNF-α, with a low concentration being more effective. Polydatin was predicted to bind to GLY162, PHE161, GLU198, THR195 and GLU191 sites of AKT protein through van der Waals force and conventional hydrogen bonds. Overexpression of AKT led to increased phosphorylation levels of AKT, p38, and p65 proteins, as well as IL-1β levels and cell apoptosis. Polydatin inhibited TNF-α-induced apoptosis of C2C12 cells by regulating NF-κB and p38 MAPK signaling pathways through AKT. This suggests that polydatin shows promise as a new drug for the treatment of skeletal muscle atrophy.","PeriodicalId":12514,"journal":{"name":"General physiology and biophysics","volume":"48 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General physiology and biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/gpb_2023027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle atrophy severely impacts one's quality of life. The effects and mechanism of polydatin on skeletal muscle atrophy are unclear. This study investigated the effects and mechanism of polydatin on TNF-α-induced skeletal muscle cells. The skeletal muscle cell atrophy model was established by inducing C2C12 cells with TNF-α. Cell viability, IL-1β levels and cell apoptosis were assessed. The mRNA and protein expression levels of apoptosis-related proteins were measured. Meanwhile, the binding of polydatin to AKT was analyzed by molecular docking. TNF-α reduced cell fusion and viability while up-regulated IL-1β level and promoted cell apoptosis. TNF-α activated AKT, NF-κB, and p38 MAPK signaling pathways. Polydatin reversed these effects induced by TNF-α, with a low concentration being more effective. Polydatin was predicted to bind to GLY162, PHE161, GLU198, THR195 and GLU191 sites of AKT protein through van der Waals force and conventional hydrogen bonds. Overexpression of AKT led to increased phosphorylation levels of AKT, p38, and p65 proteins, as well as IL-1β levels and cell apoptosis. Polydatin inhibited TNF-α-induced apoptosis of C2C12 cells by regulating NF-κB and p38 MAPK signaling pathways through AKT. This suggests that polydatin shows promise as a new drug for the treatment of skeletal muscle atrophy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多柚素通过akt介导的p38 MAPK和NF-κB途径抑制TNF-α-诱导的骨骼肌细胞凋亡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General physiology and biophysics
General physiology and biophysics 生物-生化与分子生物学
CiteScore
2.70
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: General Physiology and Biophysics is devoted to the publication of original research papers concerned with general physiology, biophysics and biochemistry at the cellular and molecular level and is published quarterly by the Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences.
期刊最新文献
Pulmonary alveolar proteinosis: Clinical and morphological overview of a rare disease associated with macrophage dysfunction. Senescence in neural cell lines: comparative insights from SH-SY5Y and ReNcell VM. Senkyunolide A attenuates cerebral ischemia-reperfusion injury by inhibiting NLRP3-mediated ferroptosis in PC12 cells. Silencing Map3k7 suppresses pyroptosis to alleviate bronchopulmonary dysplasia through inhibiting the TGF-β1/Smad3 pathway. Small nucleolar RNA 42 facilitates the progression of hepatocellular carcinoma through PI3K/Akt signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1