{"title":"Co-expression of GR79 EPSPS and GAT generates high glyphosate-resistant alfalfa with low glyphosate residues","authors":"Yingying Meng, Wenwen Zhang, Zhaoming Wang, Feng Yuan, Sandui Guo, Hao Lin, Lifang Niu","doi":"10.1007/s42994-023-00119-3","DOIUrl":null,"url":null,"abstract":"<div><p>Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of <i>GR79 EPSPS</i> (<i>pGR79 EPSPS</i>) and <i>N-acetyltransferase</i> (<i>pGAT</i>) genes, in alfalfa, via <i>Agrobacterium</i>-mediated transformation. We established that the <i>pGR79 EPSPS</i>-<i>pGAT</i> co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar. Our findings generate an elite herbicide-resistant germplasm for alfalfa breeding and provide a promising strategy for developing high-glyphosate-resistant and low-glyphosate-residue forages.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"4 4","pages":"352 - 358"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00119-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-023-00119-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Weed competition seriously threatens the yield of alfalfa, the most important forage legume worldwide, thus generating herbicide-resistant alfalfa varieties is becoming a necessary cost-effective strategy to assist farmers for weed control. Here, we report the co-expression of plant codon-optimized forms of GR79 EPSPS (pGR79 EPSPS) and N-acetyltransferase (pGAT) genes, in alfalfa, via Agrobacterium-mediated transformation. We established that the pGR79 EPSPS-pGAT co-expression alfalfa lines were able to tolerate up to tenfold higher commercial usage of glyphosate and produced approximately ten times lower glyphosate residues than the conventional cultivar. Our findings generate an elite herbicide-resistant germplasm for alfalfa breeding and provide a promising strategy for developing high-glyphosate-resistant and low-glyphosate-residue forages.