New delay-independent exponential stability rule of delayed Cohen-Grossberg neural networks

Cheng De Zheng, Haorui Meng, Shengzhou Liu
{"title":"New delay-independent exponential stability rule of delayed Cohen-Grossberg neural networks","authors":"Cheng De Zheng, Haorui Meng, Shengzhou Liu","doi":"10.1504/ijica.2023.131353","DOIUrl":null,"url":null,"abstract":"This manuscript studies the stability for a class of Cohen-Grossberg neural networks (CGNNs) with variable delays. By practicing the scheme of Lyapunov function (LF), M-matrix (MM) theory, homeomorphism theory and nonlinear measure (NM) method, a new sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability (GES) of equilibrium point (EP) for the studied network. As the condition is independent to delay, it can be applied to networks with large delays. The result generalises and improves the earlier publications. Finally, an example is supplied to exhibit the power of the results and less conservativeness over some earlier publications.","PeriodicalId":39390,"journal":{"name":"International Journal of Innovative Computing and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijica.2023.131353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This manuscript studies the stability for a class of Cohen-Grossberg neural networks (CGNNs) with variable delays. By practicing the scheme of Lyapunov function (LF), M-matrix (MM) theory, homeomorphism theory and nonlinear measure (NM) method, a new sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability (GES) of equilibrium point (EP) for the studied network. As the condition is independent to delay, it can be applied to networks with large delays. The result generalises and improves the earlier publications. Finally, an example is supplied to exhibit the power of the results and less conservativeness over some earlier publications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时滞Cohen-Grossberg神经网络新的与时滞无关的指数稳定性规则
本文研究了一类具有变时滞的Cohen-Grossberg神经网络的稳定性。通过运用Lyapunov函数(LF)格式、m -矩阵(MM)理论、同胚理论和非线性测度(NM)方法,得到了网络平衡点(EP)存在唯一性和全局指数稳定性的一个新的充分条件。由于该条件与时延无关,可以应用于时延较大的网络。结果推广和改进了早期的出版物。最后,提供了一个例子来展示结果的力量和较早的一些出版物较少的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
23
期刊介绍: IJICA proposes and fosters discussion on all new computing paradigms and corresponding applications to solve real-world problems. It will cover all aspects related to evolutionary computation, quantum-inspired computing, swarm-based computing, neuro-computing, DNA computing and fuzzy computing, as well as other new computing paradigms
期刊最新文献
Evaluation of banknote identification methodologies based on local and deep features Multilevel CNN for anterior chamber angle classification using AS-OCT images Transfer learning-based lung segmentation and pneumonia detection for paediatric chest X-ray images Wind turbine fault detection: a semi-supervised learning approach with two different dimensionality reduction techniques Heuristic-based approaches for fracture detection in borehole images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1