{"title":"Emotion recognition algorithm of basketball players based on deep learning","authors":"Limin Zhou, Cong Zhang, Miao Wang","doi":"10.1504/ijict.2023.131223","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of traditional methods of emotion recognition accuracy, long recognition time and low recognition rate, a basketball player emotion recognition algorithm based on deep learning is proposed. Based on the Emotic dataset, a basketball remote mobilisation emotion recognition dataset is constructed to realise emotion classification. The LBP method is used to extract the facial expression features in the dataset, and the KDIsomap algorithm is used to perform nonlinear dimensionality reduction on the features according to the feature extraction results. According to the deep learning algorithm, the SVM classifier is combined with the KNN classification to form an SVM-KNN classifier to recognise the emotions of basketball players. Experimental results show that the shortest recognition time of the proposed algorithm is only 4.38 s, the highest recognition accuracy rate reaches 94.2%, and the recognition rate is high, indicating that the algorithm has a certain effectiveness.","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijict.2023.131223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Aiming at the problems of traditional methods of emotion recognition accuracy, long recognition time and low recognition rate, a basketball player emotion recognition algorithm based on deep learning is proposed. Based on the Emotic dataset, a basketball remote mobilisation emotion recognition dataset is constructed to realise emotion classification. The LBP method is used to extract the facial expression features in the dataset, and the KDIsomap algorithm is used to perform nonlinear dimensionality reduction on the features according to the feature extraction results. According to the deep learning algorithm, the SVM classifier is combined with the KNN classification to form an SVM-KNN classifier to recognise the emotions of basketball players. Experimental results show that the shortest recognition time of the proposed algorithm is only 4.38 s, the highest recognition accuracy rate reaches 94.2%, and the recognition rate is high, indicating that the algorithm has a certain effectiveness.
期刊介绍:
IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM