Qahtan A. Abed, Dhafer M. Hachim, Adrian Ciocănea, Viorel Badescu
{"title":"The useful heat flux provided by the perforated plate of unglazed transpired collectors under no-wind and windy conditions","authors":"Qahtan A. Abed, Dhafer M. Hachim, Adrian Ciocănea, Viorel Badescu","doi":"10.1063/5.0165313","DOIUrl":null,"url":null,"abstract":"The air is heated in an unglazed transpired collector (UTC) from three different regions of the perforated plate: from the front of the plate, from the back of the plate, and from the inner surface of the holes. The paper focuses on the relative contribution of each of these three regions, denoted r1, r2, and r3, respectively, to the total increase in the air temperature. A hybrid approach is used: it combines experimental results with results obtained by computational fluid dynamics simulations. Under no-wind conditions, the largest part of the heat received by the air comes from the front of the plate (r1 is about 60%). The second largest part of the heat received comes from the back of the plate (r2 ranges between 25% and 30%). The inner part of the holes contributes to the heat received by the air with a fraction r3 ranging between 10% and 15%. These percentages are rather constant during the day. r1 slightly decreases, while r2 slightly increases along the UTC. The influence of the wind direction on the values of r1, r2, and r3 is not significant. However, the influence of the wind speed magnitude is significant. When the wind speed increases from 0 to 1 m/s, r1 increases from 60% to about 75%, while r2 decreases from 25%–30% to about 15%. For a wind speed of 1 m/s, the values of r1 and r2 are quite the same along the UTC.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"29 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0165313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The air is heated in an unglazed transpired collector (UTC) from three different regions of the perforated plate: from the front of the plate, from the back of the plate, and from the inner surface of the holes. The paper focuses on the relative contribution of each of these three regions, denoted r1, r2, and r3, respectively, to the total increase in the air temperature. A hybrid approach is used: it combines experimental results with results obtained by computational fluid dynamics simulations. Under no-wind conditions, the largest part of the heat received by the air comes from the front of the plate (r1 is about 60%). The second largest part of the heat received comes from the back of the plate (r2 ranges between 25% and 30%). The inner part of the holes contributes to the heat received by the air with a fraction r3 ranging between 10% and 15%. These percentages are rather constant during the day. r1 slightly decreases, while r2 slightly increases along the UTC. The influence of the wind direction on the values of r1, r2, and r3 is not significant. However, the influence of the wind speed magnitude is significant. When the wind speed increases from 0 to 1 m/s, r1 increases from 60% to about 75%, while r2 decreases from 25%–30% to about 15%. For a wind speed of 1 m/s, the values of r1 and r2 are quite the same along the UTC.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy