Experimental Analysis on Ultrasonic Resistance Spot Welding of Aluminum Alloys

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2023-09-01 DOI:10.29391/2023.102.017
HO KWON, UMAIR SHAH, XUN LIU, JULIO MALPICA, PATRICK LESTER, HARINI BONAM
{"title":"Experimental Analysis on Ultrasonic Resistance Spot Welding of Aluminum Alloys","authors":"HO KWON, UMAIR SHAH, XUN LIU, JULIO MALPICA, PATRICK LESTER, HARINI BONAM","doi":"10.29391/2023.102.017","DOIUrl":null,"url":null,"abstract":"A recently developed hybrid joining process known as ultrasonic resistance spot welding (URW) was used on various pairs of similar and dissimilar aluminum (Al) alloys with different thicknesses, including AA5182–AA5182, AA6111–AA6111, AA7075–AA6111, and AA7075–AA5182, and comprehensively studied. Compared to conventional resistance spot welding (RSW), URW of the alloys showed consistently enhanced mechanical behavior in lap shear and crosstension tests. This can be attributed to the multiple perspectives on microstructure improvements. For different stacks of Al alloys and welding conditions, nugget formation was promoted with a larger nugget size in URW. In the nugget center, ultrasonically assisted (UA) vibration facilitated the formation of an equiaxed crystal zone. At the nugget boundary, URW showed a narrower coarse columnar zone and partially melted zone, which are associatedwith the lowest hardness in the weld. Specifically in dissimilar Al welds, UA vibration moved the nugget more centered toward the weld interface. These microstructure improvements indicated UA vibration can homogenize temperature and elemental distribution, which modifies solidification behavior.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29391/2023.102.017","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A recently developed hybrid joining process known as ultrasonic resistance spot welding (URW) was used on various pairs of similar and dissimilar aluminum (Al) alloys with different thicknesses, including AA5182–AA5182, AA6111–AA6111, AA7075–AA6111, and AA7075–AA5182, and comprehensively studied. Compared to conventional resistance spot welding (RSW), URW of the alloys showed consistently enhanced mechanical behavior in lap shear and crosstension tests. This can be attributed to the multiple perspectives on microstructure improvements. For different stacks of Al alloys and welding conditions, nugget formation was promoted with a larger nugget size in URW. In the nugget center, ultrasonically assisted (UA) vibration facilitated the formation of an equiaxed crystal zone. At the nugget boundary, URW showed a narrower coarse columnar zone and partially melted zone, which are associatedwith the lowest hardness in the weld. Specifically in dissimilar Al welds, UA vibration moved the nugget more centered toward the weld interface. These microstructure improvements indicated UA vibration can homogenize temperature and elemental distribution, which modifies solidification behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝合金超声电阻点焊试验分析
将超声电阻点焊(URW)技术应用于AA5182-AA5182、AA6111-AA6111、AA7075-AA6111、AA7075-AA5182等不同厚度的异种铝合金对上,并进行了综合研究。与传统的电阻点焊(RSW)相比,URW合金在搭接剪切和拉伸试验中表现出持续增强的力学性能。这可以归因于微观结构改进的多个角度。对于不同的铝合金堆砌和焊接条件,超熔堆中熔核尺寸越大,熔核形成越明显。在熔核中心,超声辅助(UA)振动促进了等轴晶区的形成。在熔核边界处,URW呈现出较窄的粗柱状区和部分熔化区,这些区域与焊缝硬度最低有关。特别是在不同的Al焊缝中,UA振动使熔核向焊缝界面中心移动。这些微观组织的改善表明,UA振动可以使温度和元素分布均匀化,从而改变凝固行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1