Minhui Zhang, Jian Lin, Song Ye, Deping Wang, Aihua Yao, Xuanyu Zhang, Rui Wu, Chengyun Jin
{"title":"The effects of boron trioxide on the structure and degradation behaviour of borosilicate bioactive glass","authors":"Minhui Zhang, Jian Lin, Song Ye, Deping Wang, Aihua Yao, Xuanyu Zhang, Rui Wu, Chengyun Jin","doi":"10.1080/10667857.2023.2199581","DOIUrl":null,"url":null,"abstract":"Degradation behaviour of bioactive glass (bioglass) is one of the most important factors affecting bone repair, because an excellent and controllable degradation rate can match the rate of new bone formation. In this research, the derived borosilicate bioglasses based on the 6Na2O-8K2O-8MgO-22CaO-18B2O3-54SiO2-2P2O5 component were synthesized. The effects of B2O3 on the structure, degradation behaviour and cytocompatibility of borosilicate bioglasses were systematically studied. The results showed that with B2O3 addition, the network-forming units became diversified and part of BO4 units transformed into BO3 units. These factors weakened the chemical durability of borosilicate bioglass, thus accelerating the bioglass shedding and altering the ions release, especially B. This study provides a theoretical basis for designing borosilicate bioglass with adjustable degradation rate and ion release behaviour to meet the diverse needs of clinical bone repair.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"47 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2199581","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Degradation behaviour of bioactive glass (bioglass) is one of the most important factors affecting bone repair, because an excellent and controllable degradation rate can match the rate of new bone formation. In this research, the derived borosilicate bioglasses based on the 6Na2O-8K2O-8MgO-22CaO-18B2O3-54SiO2-2P2O5 component were synthesized. The effects of B2O3 on the structure, degradation behaviour and cytocompatibility of borosilicate bioglasses were systematically studied. The results showed that with B2O3 addition, the network-forming units became diversified and part of BO4 units transformed into BO3 units. These factors weakened the chemical durability of borosilicate bioglass, thus accelerating the bioglass shedding and altering the ions release, especially B. This study provides a theoretical basis for designing borosilicate bioglass with adjustable degradation rate and ion release behaviour to meet the diverse needs of clinical bone repair.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.