Using simulation to quantify the performance of automotive perception systems

Zhenyi Liu, Devesh Shah, Alireza Rahimpour, Devesh Upadhyay, Joyce Farrell, Brian Wandell
{"title":"Using simulation to quantify the performance of automotive perception systems","authors":"Zhenyi Liu, Devesh Shah, Alireza Rahimpour, Devesh Upadhyay, Joyce Farrell, Brian Wandell","doi":"10.2352/ei.2023.35.16.avm-118","DOIUrl":null,"url":null,"abstract":"The design and evaluation of complex systems can benefit from a software simulation - sometimes called a digital twin. The simulation can be used to characterize system performance or to test its performance under conditions that are difficult to measure (e.g., nighttime for automotive perception systems). We describe the image system simulation software tools that we use to evaluate the performance of image systems for object (automobile) detection. We describe experiments with 13 different cameras with a variety of optics and pixel sizes. To measure the impact of camera spatial resolution, we designed a collection of driving scenes that had cars at many different distances. We quantified system performance by measuring average precision and we report a trend relating system resolution and object detection performance. We also quantified the large performance degradation under nighttime conditions, compared to daytime, for all cameras and a COCO pre-trained network.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.16.avm-118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design and evaluation of complex systems can benefit from a software simulation - sometimes called a digital twin. The simulation can be used to characterize system performance or to test its performance under conditions that are difficult to measure (e.g., nighttime for automotive perception systems). We describe the image system simulation software tools that we use to evaluate the performance of image systems for object (automobile) detection. We describe experiments with 13 different cameras with a variety of optics and pixel sizes. To measure the impact of camera spatial resolution, we designed a collection of driving scenes that had cars at many different distances. We quantified system performance by measuring average precision and we report a trend relating system resolution and object detection performance. We also quantified the large performance degradation under nighttime conditions, compared to daytime, for all cameras and a COCO pre-trained network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用仿真方法量化汽车感知系统的性能
复杂系统的设计和评估可以受益于软件模拟-有时被称为数字孪生。模拟可用于表征系统性能或测试其在难以测量的条件下的性能(例如,汽车感知系统的夜间)。我们描述了我们用来评估物体(汽车)检测图像系统性能的图像系统仿真软件工具。我们描述了用13种不同的光学和像素大小的相机进行的实验。为了测量相机空间分辨率的影响,我们设计了一组驾驶场景,其中有许多不同距离的汽车。我们通过测量平均精度来量化系统性能,并报告了与系统分辨率和目标检测性能相关的趋势。我们还量化了所有摄像机和COCO预训练网络在夜间条件下与白天相比的较大性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment. Optical flow for autonomous driving: Applications, challenges and improvements Improving the performance of web-streaming by super-resolution upscaling techniques Self-supervised visual representation learning on food images Conditional synthetic food image generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1