Generative adversarial networks (GANs) and object tracking (OT) for vehicle accident detection

Taraka Rama Krishna Kanth Kannuri, Kirsnaragavan Arudpiragasam, Klaus Schwarz, Michael Hartmann, Reiner Creutzburg
{"title":"Generative adversarial networks (GANs) and object tracking (OT) for vehicle accident detection","authors":"Taraka Rama Krishna Kanth Kannuri, Kirsnaragavan Arudpiragasam, Klaus Schwarz, Michael Hartmann, Reiner Creutzburg","doi":"10.2352/ei.2023.35.3.mobmu-364","DOIUrl":null,"url":null,"abstract":"Accident detection is one of the biggest challenges as there are various anomalies, occlusions, and objects in the image at different times. Therefore, this paper focuses on detecting traffic accidents through a combination of Object Tracking (OT) and image generation using GAN with variants such as skip connection, residual, and attention connection. The background removal techniques will be applied to reduce the background variation in the frame. Later, YOLO-R is used to detect objects, followed by DeepSort tracking of objects in the frame. Finally, the distance error metric and the adversarial error are determined using the Kalman filter and the GAN approach and help to decide accidents in videos.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.3.mobmu-364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accident detection is one of the biggest challenges as there are various anomalies, occlusions, and objects in the image at different times. Therefore, this paper focuses on detecting traffic accidents through a combination of Object Tracking (OT) and image generation using GAN with variants such as skip connection, residual, and attention connection. The background removal techniques will be applied to reduce the background variation in the frame. Later, YOLO-R is used to detect objects, followed by DeepSort tracking of objects in the frame. Finally, the distance error metric and the adversarial error are determined using the Kalman filter and the GAN approach and help to decide accidents in videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成对抗网络(GANs)和目标跟踪(OT)在车辆事故检测中的应用
事故检测是最大的挑战之一,因为在不同的时间图像中存在各种异常、遮挡和物体。因此,本文的重点是通过结合目标跟踪(OT)和使用GAN的图像生成来检测交通事故,其中包含跳跃连接、残差和注意连接等变体。背景去除技术将被用于减少背景变化的框架。然后使用YOLO-R对目标进行检测,然后对帧内的目标进行深度排序跟踪。最后,利用卡尔曼滤波和GAN方法确定距离误差度量和对抗误差,以帮助确定视频中的事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment. Optical flow for autonomous driving: Applications, challenges and improvements Improving the performance of web-streaming by super-resolution upscaling techniques Self-supervised visual representation learning on food images Conditional synthetic food image generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1