Koopman Operator Based Predictive Control With a Data Archive of Observables

Kartik Loya, Jake Buzhardt, Phanindra Tallapragada
{"title":"Koopman Operator Based Predictive Control With a Data Archive of Observables","authors":"Kartik Loya, Jake Buzhardt, Phanindra Tallapragada","doi":"10.1115/1.4063604","DOIUrl":null,"url":null,"abstract":"Abstract The control of complex systems is often challenging due to high dimensional nonlinear models, unmodeled phenomena, and parameter uncertainty. The increasing ubiquity of sensors measuring such systems and increased computational resources has led to an interest in purely data-driven control methods, particularly using the Koopman operator. In this paper, we elucidate the construction of a linear predictor based on a sequence of time realizations of observables drawn from a data archive of different trajectories combined with subspace identification methods for linear systems. This approach is free of any predefined set of basis functions but instead depends on the time realization of these basis functions. The prediction and control are demonstrated with examples. The basis functions can be constructed using timedelayed coordinates of the outputs, enabling the application to purely data-driven systems. The paper thus shows the link between Koopman operator-based control methods and classical subspace identification methods. The approach in this paper can be extended to adaptive online learning and control.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The control of complex systems is often challenging due to high dimensional nonlinear models, unmodeled phenomena, and parameter uncertainty. The increasing ubiquity of sensors measuring such systems and increased computational resources has led to an interest in purely data-driven control methods, particularly using the Koopman operator. In this paper, we elucidate the construction of a linear predictor based on a sequence of time realizations of observables drawn from a data archive of different trajectories combined with subspace identification methods for linear systems. This approach is free of any predefined set of basis functions but instead depends on the time realization of these basis functions. The prediction and control are demonstrated with examples. The basis functions can be constructed using timedelayed coordinates of the outputs, enabling the application to purely data-driven systems. The paper thus shows the link between Koopman operator-based control methods and classical subspace identification methods. The approach in this paper can be extended to adaptive online learning and control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Koopman算子的可观测数据存档预测控制
由于高维非线性模型、未建模现象和参数不确定性,复杂系统的控制往往具有挑战性。随着测量此类系统的传感器的日益普及和计算资源的增加,人们对纯数据驱动的控制方法产生了兴趣,特别是使用Koopman算子。在本文中,我们阐明了基于从不同轨迹的数据档案中提取的可观测值的时间实现序列的线性预测器的构造,并结合线性系统的子空间识别方法。这种方法不需要任何预定义的基函数集合,而是依赖于这些基函数的时间实现。通过实例对预测和控制进行了验证。基函数可以使用输出的延时坐标来构造,从而使应用程序成为纯粹的数据驱动系统。因此,本文展示了基于Koopman算子的控制方法与经典子空间辨识方法之间的联系。本文的方法可以推广到自适应在线学习和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1