Novel Sulfone 2-Aminobenzimidazole Derivatives and Their Coordination Compounds: Contribution of the Ethyl and Phenyl Substituents on Non-Covalent Molecular Interactions; Biological Antiproliferative Activity

David Colorado-Solís, Rodrigo Castro-Ramírez, Francisco Sánchez-Bartéz, Isabel Gracia-Mora, Norah Barba-Behrens
{"title":"Novel Sulfone 2-Aminobenzimidazole Derivatives and Their Coordination Compounds: Contribution of the Ethyl and Phenyl Substituents on Non-Covalent Molecular Interactions; Biological Antiproliferative Activity","authors":"David Colorado-Solís, Rodrigo Castro-Ramírez, Francisco Sánchez-Bartéz, Isabel Gracia-Mora, Norah Barba-Behrens","doi":"10.3390/inorganics11100392","DOIUrl":null,"url":null,"abstract":"New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent interactions, mainly H···π, lone pair···π, and π···π, highlighting the difference between the terminal ethyl and phenyl groups in such interactions. Dimeric and trimeric supramolecular syntons were found for some of these compounds. Additionally, their antiproliferative activity was investigated, finding that the copper(II) compounds with the sulfone phenyl derivative were the most active.","PeriodicalId":13580,"journal":{"name":"Inorganics (Basel)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inorganics11100392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New sulfone 2-aminobenzimidazole derivatives were designed and synthesized. Their nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) compounds were obtained and fully characterized by spectroscopic and analytical techniques. Single crystal X-ray structural analysis was performed in order to study the relevant intra and inter non-covalent interactions, mainly H···π, lone pair···π, and π···π, highlighting the difference between the terminal ethyl and phenyl groups in such interactions. Dimeric and trimeric supramolecular syntons were found for some of these compounds. Additionally, their antiproliferative activity was investigated, finding that the copper(II) compounds with the sulfone phenyl derivative were the most active.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型磺酰2-氨基苯并咪唑衍生物及其配位化合物:乙基和苯基取代基对非共价分子相互作用的贡献生物抗增殖活性
设计并合成了新的2-氨基苯并咪唑砜衍生物。得到了它们的镍(II)、铜(II)、锌(II)、镉(II)和汞(II)化合物,并通过光谱和分析技术对其进行了充分的表征。通过单晶x射线结构分析,研究了相关的非共价相互作用,主要是H···π、孤对··π和π··π,突出了这些相互作用中末端乙基和苯基的差异。在其中一些化合物中发现了二聚体和三聚体的超分子模式。此外,对其抗增殖活性进行了研究,发现含砜苯基衍生物的铜(II)化合物的抗增殖活性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Organic Cages Based on Phosphorescent Organometallics N-Based Polydentate Ligands and Corresponding Zn(II) Complexes: A Structural and Spectroscopic Study Thermochemistry, Structure, and Optical Properties of a Newβ-La2(SO4)3 Polymorphic Modification Synthesis, Characterization, and Impact of Water on the Stability of Postmodified Schiff Base Containing Metal–Organic Frameworks Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1