Sunil Chamoli, Amit Joshi, Sumit Rana, Suvanjan Bhattacharaya, Ashutosh Gupta, Siddharth Ghansela, Chinaruk Thianpong, Smith Eiamsa-ard
{"title":"Numerical Methodology to Reduce the Drag and Control Flow around a Cam-Shaped Cylinder Integrated with Backward Splitter Plate","authors":"Sunil Chamoli, Amit Joshi, Sumit Rana, Suvanjan Bhattacharaya, Ashutosh Gupta, Siddharth Ghansela, Chinaruk Thianpong, Smith Eiamsa-ard","doi":"10.3390/computation11100196","DOIUrl":null,"url":null,"abstract":"After publishing a research article in the year 2019, a cam-shaped cylinder was introduced, and the results expressed its ability to prevent the vortex from shedding. This makes the cam-shaped cylinder a better performer than the circular cylinder. This work is an extension of past work with the aim of further reducing drag by attaching a backward splitter plate to a cam-shaped cylinder. In an attempt to decrease drag and regulate the wake regime more efficiently than the traditional splitter plate control devices, a splitter plate flow departure control device is presented in this paper for a low Reynolds number flow range (Re = 50–200). It has been noted that when plate length increases, integral parameters like drag, lift, and Strouhal number do not change monotonically. The Strouhal number (St) increases with a drop in D2/Deq, but the average drag reduces with a rise in Re and a decrease in D2/Deq, respectively. In terms of decreased drag, the current cam-shaped cylinders attached to a rearward splitter plate have shown their superiority to other bluff bodies.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"17 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
After publishing a research article in the year 2019, a cam-shaped cylinder was introduced, and the results expressed its ability to prevent the vortex from shedding. This makes the cam-shaped cylinder a better performer than the circular cylinder. This work is an extension of past work with the aim of further reducing drag by attaching a backward splitter plate to a cam-shaped cylinder. In an attempt to decrease drag and regulate the wake regime more efficiently than the traditional splitter plate control devices, a splitter plate flow departure control device is presented in this paper for a low Reynolds number flow range (Re = 50–200). It has been noted that when plate length increases, integral parameters like drag, lift, and Strouhal number do not change monotonically. The Strouhal number (St) increases with a drop in D2/Deq, but the average drag reduces with a rise in Re and a decrease in D2/Deq, respectively. In terms of decreased drag, the current cam-shaped cylinders attached to a rearward splitter plate have shown their superiority to other bluff bodies.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.