Dynamics and FNTSM control of spacecraft with a film capture pocket system

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE 中国空间科学技术 Pub Date : 2023-01-01 DOI:10.34133/space.0079
Zhuoran Huang, Chao Tang, Qiang Yu, Khaliel Saleh Mohamed Shehata, Cheng Wei
{"title":"Dynamics and FNTSM control of spacecraft with a film capture pocket system","authors":"Zhuoran Huang, Chao Tang, Qiang Yu, Khaliel Saleh Mohamed Shehata, Cheng Wei","doi":"10.34133/space.0079","DOIUrl":null,"url":null,"abstract":"To solve the problem of space debris, a film capture pocket system is designed in this paper. The film capture pocket is more flexible and reliable, compared with the space rope net. The film capture pocket system contains many flexible structures that are prone to large deformation and vibration during movement. The deformation causes large disturbances to the service spacecraft. It is necessary to establish an accurate rigid-flexible coupling dynamic model for quantitative analysis of disturbances. First, a film dynamic model is developed using high-order absolute nodal coordinate formulation. Second, an attitude tracking control law is designed by using the fast nonsingular terminal sliding mode controller and fixed time dilation observer (FxESO). Finally, combining dynamics and control principles, a virtual prototype of spacecraft with film capture pocket system is established. The simulation results show that higher-order absolute nodal coordinate formulation elements have better convergence, compared to ABAQUS finite element analysis. Meanwhile, the dynamic model simulates the deformation and vibration states of large flexible structures, during the spacecraft maneuver. The FxESO can estimate and compensate the complex disturbance. The error under fast nonsingular terminal sliding mode + FxESO control law converge more rapidly than the nonsingular terminal sliding mode + expansion observer control law. The final spacecraft attitude tracking error is about 10 −4 , indicating the effectiveness of the controller.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"46 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国空间科学技术","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/space.0079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem of space debris, a film capture pocket system is designed in this paper. The film capture pocket is more flexible and reliable, compared with the space rope net. The film capture pocket system contains many flexible structures that are prone to large deformation and vibration during movement. The deformation causes large disturbances to the service spacecraft. It is necessary to establish an accurate rigid-flexible coupling dynamic model for quantitative analysis of disturbances. First, a film dynamic model is developed using high-order absolute nodal coordinate formulation. Second, an attitude tracking control law is designed by using the fast nonsingular terminal sliding mode controller and fixed time dilation observer (FxESO). Finally, combining dynamics and control principles, a virtual prototype of spacecraft with film capture pocket system is established. The simulation results show that higher-order absolute nodal coordinate formulation elements have better convergence, compared to ABAQUS finite element analysis. Meanwhile, the dynamic model simulates the deformation and vibration states of large flexible structures, during the spacecraft maneuver. The FxESO can estimate and compensate the complex disturbance. The error under fast nonsingular terminal sliding mode + FxESO control law converge more rapidly than the nonsingular terminal sliding mode + expansion observer control law. The final spacecraft attitude tracking error is about 10 −4 , indicating the effectiveness of the controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于薄膜捕获口袋系统的航天器动力学与FNTSM控制
为解决空间碎片捕获问题,本文设计了一种薄膜捕获袋系统。与太空绳网相比,薄膜捕捉袋更加灵活可靠。薄膜捕获袋系统包含许多柔性结构,在运动过程中容易产生大的变形和振动。这种变形对服役航天器造成很大的干扰。为了对扰动进行定量分析,需要建立精确的刚柔耦合动力学模型。首先,采用高阶绝对节点坐标法建立了薄膜动力学模型。其次,采用快速非奇异末端滑模控制器和固定时间膨胀观测器(FxESO)设计姿态跟踪控制律;最后,将动力学原理与控制原理相结合,建立了具有薄膜捕获口袋系统的航天器虚拟样机。仿真结果表明,与ABAQUS有限元分析相比,高阶绝对节点坐标表述单元具有更好的收敛性。同时,该动力学模型模拟了航天器机动过程中大型柔性结构的变形和振动状态。FxESO能够估计和补偿复杂的扰动。快速非奇异终端滑模+ FxESO控制律下的误差收敛速度比非奇异终端滑模+扩展观测器控制律下的误差收敛速度快。最终航天器姿态跟踪误差约为10−4,表明了控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国空间科学技术
中国空间科学技术 ENGINEERING, AEROSPACE-
CiteScore
1.80
自引率
66.70%
发文量
3141
期刊介绍:
期刊最新文献
Evaluation of Application Effectiveness on Ocean Salinity Satellite RFI Detection Algorithms Safety design for China space station Orbital interception pursuit strategy for random evasion using deep reinforcement learning Integration of Communication and Navigation Technologies Towards LEO-Enabled 6G Networks: A Survey Accuracy Evaluation of Marginalized Unscented Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1