Learning and approximating piecewise smooth functions by deep sigmoid neural networks

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS Mathematical foundations of computing Pub Date : 2023-01-01 DOI:10.3934/mfc.2023039
Xia Liu
{"title":"Learning and approximating piecewise smooth functions by deep sigmoid neural networks","authors":"Xia Liu","doi":"10.3934/mfc.2023039","DOIUrl":null,"url":null,"abstract":"Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory, so is it in learning theory. In this paper, we are going to construct a deep neural network with three hidden layers using sigmoid function to approximate and learn the piecewise smooth functions, respectively. In particular, we prove that the constructed deep sigmoid nets can reach the optimal approximation rate in approximating the piecewise smooth functions with controllable parameters but without saturation. Similar results can also be obtained in learning theory, that is, the constructed deep sigmoid nets can also realize the optimal learning rates in learning the piecewise smooth functions. The above two obtained results underlie the advantages of deep sigmoid nets and provide theoretical assessment for deep learning.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"298 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2023039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing neural networks for function approximation is a classical and longstanding topic in approximation theory, so is it in learning theory. In this paper, we are going to construct a deep neural network with three hidden layers using sigmoid function to approximate and learn the piecewise smooth functions, respectively. In particular, we prove that the constructed deep sigmoid nets can reach the optimal approximation rate in approximating the piecewise smooth functions with controllable parameters but without saturation. Similar results can also be obtained in learning theory, that is, the constructed deep sigmoid nets can also realize the optimal learning rates in learning the piecewise smooth functions. The above two obtained results underlie the advantages of deep sigmoid nets and provide theoretical assessment for deep learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度s型神经网络的分段光滑函数学习与逼近
构造用于函数逼近的神经网络是逼近理论和学习理论中一个经典而长久的课题。在本文中,我们将分别使用sigmoid函数来近似和学习分段光滑函数,构建一个具有三隐层的深度神经网络。特别地,我们证明了所构造的深度s型网在逼近参数可控但不饱和的分段光滑函数时可以达到最优逼近率。在学习理论中也可以得到类似的结果,即所构造的深度s型网络在学习分段光滑函数时也能实现最优学习率。以上两个结果体现了深度s型网的优势,为深度学习提供了理论评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Stability analysis of fractional order modelling of social media addiction Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials On hybrid Baskakov operators preserving two exponential functions Approximation rate and saturation under generalized convergence Lyapunov type inequalities for nonlinear fractional Hamiltonian systems in the frame of conformable derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1