Theoretical and experimental progress of mesoscopic statistical thermodynamics

Hai-Tao Quan, Hui Dong, Chang-Pu Sun
{"title":"Theoretical and experimental progress of mesoscopic statistical thermodynamics","authors":"Hai-Tao Quan, Hui Dong, Chang-Pu Sun","doi":"10.7498/aps.72.20231608","DOIUrl":null,"url":null,"abstract":"Does thermodynamics still hold true for mecroscopic small systems with only limited degrees of freedom? Do concepts such as temperature, entropy, work done, heat transfer, isothermal processes, and the Carnot cycle remain valid? Does the thermodynamic theory for small systems need modifying or supplementing compared with traditional thermodynamics applicable to macroscopic systems? Taking a single-particle system for example, we investigate the applicability of thermodynamic concepts and laws in small systems. We have found that thermodynamic laws still hold true in small systems at an ensemble-averaged level. After considering the information erasure of the Maxwell's demon, the second law of thermodynamics is not violated. Additionally, 'small systems' bring some new features. Fluctuations in thermodynamic quantities become prominent. In any process far from equilibrium, the distribution functions of thermodynamic quantities satisfy certain rigorously established identities. These identities are known as fluctuation theorems. The second law of thermodynamics can be derived from them. Therefore, fluctuation theorems can be considered an upgradation to the second law of thermodynamics. They enable physicists to obtain equilibrium properties (e.g. free energy difference) by measuring physical quantities associated with non-equilibrium processes (e.g. work distributions). Furthermore, despite some distinct quantum features, the performance of quantum heat engine does not outperform that of classical heat engine. The introduction of motion equations into small system makes the relationship between thermodynamics and mechanics closer than before. Physicists can study energy dissipation in non-equilibrium process and optimize the power and efficiency of heat engine from the first principle. These findings enrich the content of thermodynamic theory and provide new ideas for establishing a general framework for non-equilibrium thermodynamics.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Does thermodynamics still hold true for mecroscopic small systems with only limited degrees of freedom? Do concepts such as temperature, entropy, work done, heat transfer, isothermal processes, and the Carnot cycle remain valid? Does the thermodynamic theory for small systems need modifying or supplementing compared with traditional thermodynamics applicable to macroscopic systems? Taking a single-particle system for example, we investigate the applicability of thermodynamic concepts and laws in small systems. We have found that thermodynamic laws still hold true in small systems at an ensemble-averaged level. After considering the information erasure of the Maxwell's demon, the second law of thermodynamics is not violated. Additionally, 'small systems' bring some new features. Fluctuations in thermodynamic quantities become prominent. In any process far from equilibrium, the distribution functions of thermodynamic quantities satisfy certain rigorously established identities. These identities are known as fluctuation theorems. The second law of thermodynamics can be derived from them. Therefore, fluctuation theorems can be considered an upgradation to the second law of thermodynamics. They enable physicists to obtain equilibrium properties (e.g. free energy difference) by measuring physical quantities associated with non-equilibrium processes (e.g. work distributions). Furthermore, despite some distinct quantum features, the performance of quantum heat engine does not outperform that of classical heat engine. The introduction of motion equations into small system makes the relationship between thermodynamics and mechanics closer than before. Physicists can study energy dissipation in non-equilibrium process and optimize the power and efficiency of heat engine from the first principle. These findings enrich the content of thermodynamic theory and provide new ideas for establishing a general framework for non-equilibrium thermodynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介观统计热力学的理论与实验进展
热力学对于只有有限自由度的微观小系统仍然成立吗?温度、熵、做功、传热、等温过程和卡诺循环等概念还有效吗?与传统的宏观热力学相比,小系统热力学理论是否需要修改或补充?以单粒子系统为例,研究了热力学概念和定律在小系统中的适用性。我们已经发现热力学定律在小系统的总体平均水平上仍然成立。在考虑麦克斯韦妖的信息擦除后,热力学第二定律没有被违反。此外,“小型系统”带来了一些新功能。热力学量的波动变得突出。在任何远离平衡态的过程中,热力学量的分布函数都满足某些严格建立的恒等式。这些恒等式被称为涨落定理。热力学第二定律可以从它们推导出来。因此,涨落定理可以看作是热力学第二定律的升级。它们使物理学家能够通过测量与非平衡过程(如功分布)相关的物理量来获得平衡特性(如自由能差)。此外,尽管量子热机具有一些明显的量子特征,但其性能并不优于经典热机。在小系统中引入运动方程,使热力学和力学的关系更加紧密。物理学家可以从热力学第一原理出发,研究非平衡过程中的能量耗散,优化热机的功率和效率。这些发现丰富了热力学理论的内容,为建立非平衡态热力学的一般框架提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1