Counter-checking uncertainty calculations in Bayesian operational modal analysis with EM techniques

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Probabilistic Engineering Mechanics Pub Date : 2024-01-01 DOI:10.1016/j.probengmech.2023.103542
Xinda Ma, Siu-Kui Au
{"title":"Counter-checking uncertainty calculations in Bayesian operational modal analysis with EM techniques","authors":"Xinda Ma,&nbsp;Siu-Kui Au","doi":"10.1016/j.probengmech.2023.103542","DOIUrl":null,"url":null,"abstract":"<div><p><span>Bayesian operational modal analysis<span> makes inference about the modal properties (e.g., natural frequency, damping ratio) of a structure using ‘output-only’ ambient vibration data. With sufficient data in applications, the posterior probability density function (PDF) of modal properties can be approximated by a Gaussian PDF, whose </span></span>covariance matrix<span> is given by the inverse of the Hessian of negative log-likelihood function (NLLF) at the most probable value. Existing methodologies for computing the Hessian are based on semi-analytical formulae that offer an efficient and reliable means for applications. Inevitably, their computer coding can be involved, e.g., a mix of variables with different sensitivities, singularity<span> of Hessian due to constraints. In the absence of analytical or numerically ‘exact’ result for benchmarking, computer code verification during development stage is also non-trivial. Currently, finite difference method is often used as the only and last resort for verification, although there are also difficulties in, e.g., the choice of step size, and criterion for comparison/convergence. Motivated by these, this work explores an identity in the theory of Expectation-Maximisation (EM) algorithm to provide an alternative means for evaluating the Hessian of NLLF. Such identity allows one to evaluate the Hessian by means of Monte Carlo simulation, averaging over random samples of hidden variables. While the existing semi-analytical approach is still preferred for Hessian calculations in applications for its high definitive accuracy and speed, the proposed Monte Carlo solution offers a convenient means for counter-checking during code development. Theoretical implications of the identity will be discussed and numerical examples will be given to illustrate implementation aspects.</span></span></p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103542"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892023001315","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian operational modal analysis makes inference about the modal properties (e.g., natural frequency, damping ratio) of a structure using ‘output-only’ ambient vibration data. With sufficient data in applications, the posterior probability density function (PDF) of modal properties can be approximated by a Gaussian PDF, whose covariance matrix is given by the inverse of the Hessian of negative log-likelihood function (NLLF) at the most probable value. Existing methodologies for computing the Hessian are based on semi-analytical formulae that offer an efficient and reliable means for applications. Inevitably, their computer coding can be involved, e.g., a mix of variables with different sensitivities, singularity of Hessian due to constraints. In the absence of analytical or numerically ‘exact’ result for benchmarking, computer code verification during development stage is also non-trivial. Currently, finite difference method is often used as the only and last resort for verification, although there are also difficulties in, e.g., the choice of step size, and criterion for comparison/convergence. Motivated by these, this work explores an identity in the theory of Expectation-Maximisation (EM) algorithm to provide an alternative means for evaluating the Hessian of NLLF. Such identity allows one to evaluate the Hessian by means of Monte Carlo simulation, averaging over random samples of hidden variables. While the existing semi-analytical approach is still preferred for Hessian calculations in applications for its high definitive accuracy and speed, the proposed Monte Carlo solution offers a convenient means for counter-checking during code development. Theoretical implications of the identity will be discussed and numerical examples will be given to illustrate implementation aspects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用电磁技术反检查贝叶斯运行模式分析中的不确定性计算
贝叶斯运行模态分析利用 "仅输出 "的环境振动数据对结构的模态属性(如固有频率、阻尼比)进行推断。有了足够的应用数据,模态属性的后验概率密度函数(PDF)就可以用高斯概率密度函数来近似,其协方差矩阵由最可能值的负对数似然函数(NLLF)的赫赛方的逆矩阵给出。现有的 Hessian 计算方法基于半解析公式,为应用提供了高效可靠的方法。但不可避免的是,这些方法可能涉及计算机编码,例如,具有不同敏感性的变量混合、由于约束条件导致的赫塞斯奇异性等。由于缺乏分析或数值上的 "精确 "结果作为基准,开发阶段的计算机代码验证也并非易事。目前,有限差分法通常被用作验证的唯一和最后手段,但在步长选择和比较/收敛标准等方面也存在困难。受此启发,本研究探索了期望最大化(EM)算法理论中的一个特性,为评估 NLLF 的 Hessian 提供了另一种方法。这种特性允许我们通过蒙特卡罗模拟,对隐藏变量的随机样本进行平均,来评估赫塞斯。虽然现有的半分析方法因其确定性高、准确性高和速度快而在应用中仍是赫塞斯计算的首选,但所提出的蒙特卡罗解决方案为代码开发过程中的反检查提供了便利。我们将讨论该特性的理论意义,并给出数值示例来说明实施方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
期刊最新文献
Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads Fractional-order filter approximations for efficient stochastic response determination of wind-excited linear structural systems Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1