{"title":"Molecular Mechanisms of the miR396b-<i>GRF1</i> Module Underlying Rooting Regulation in <i>Acer rubrum L.</i>","authors":"Manyu Zhang, Huiju Li, Huiyu Zhu, Hewen Zhao, Kezhong Zhang, Wei Ge","doi":"10.1177/11769343231211071","DOIUrl":null,"url":null,"abstract":"Rooting and root development in Acer rubrum have important effects on overall growth. A. rubrum does not take root easily in natural conditions. In this study, the mechanisms of the miR396b- GRF1 module underlying rooting regulation in A. rubrum were studied. The subcellular localization and transcriptional activation of miR396b and its target gene growth regulating factor 1 ( GRF1) were investigated. These experiments showed that GRF1 was localized in the nucleus and had transcriptional activation activity. Functional validation experiments in transgenic plants demonstrated that overexpression of Ar-miR396b inhibited adventitious root growth, whereas overexpression of ArGRF1 increased adventitious root growth. These results help clarify the molecular regulatory mechanisms underlying adventitious root growth in A. rubrum and provide some new insights into the rooting rate in this species.","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"139 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769343231211071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rooting and root development in Acer rubrum have important effects on overall growth. A. rubrum does not take root easily in natural conditions. In this study, the mechanisms of the miR396b- GRF1 module underlying rooting regulation in A. rubrum were studied. The subcellular localization and transcriptional activation of miR396b and its target gene growth regulating factor 1 ( GRF1) were investigated. These experiments showed that GRF1 was localized in the nucleus and had transcriptional activation activity. Functional validation experiments in transgenic plants demonstrated that overexpression of Ar-miR396b inhibited adventitious root growth, whereas overexpression of ArGRF1 increased adventitious root growth. These results help clarify the molecular regulatory mechanisms underlying adventitious root growth in A. rubrum and provide some new insights into the rooting rate in this species.
期刊介绍:
Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.