Data-driven wake model parameter estimation to analyze effects of wake superposition

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-11-01 DOI:10.1063/5.0163896
M. J. LoCascio, C. Gorlé, M. F. Howland
{"title":"Data-driven wake model parameter estimation to analyze effects of wake superposition","authors":"M. J. LoCascio, C. Gorlé, M. F. Howland","doi":"10.1063/5.0163896","DOIUrl":null,"url":null,"abstract":"Low-fidelity wake models are used for wind farm design and control optimization. To generalize to a wind farm model, individually modeled wakes are commonly superimposed using approximate superposition models. Wake models parameterize atmospheric and wake turbulence, introducing unknown model parameters that historically are tuned with idealized simulation or experimental data and neglect uncertainty. We calibrate and estimate the uncertainty of the parameters in a Gaussian wake model using Markov chain Monte Carlo (MCMC) for various wake superposition methods. Posterior distributions of the uncertain parameters are generated using power production data from large eddy simulations and a utility-scale wake steering field experiment. The posteriors for the wake expansion coefficient are sensitive to the choice of superposition method, with relative differences in the means and standard deviations on the order of 100%. This sensitivity illustrates the role of superposition methods in wake modeling error. We compare these data-driven parameter estimates to estimates derived from a standard turbulence-intensity based model as a baseline. To assess predictive accuracy, we calibrate the data-driven parameter estimates with a training dataset for yaw-aligned operation. Using a Monte Carlo approach, we then generate predicted distributions of turbine power production and evaluate against a hold-out test dataset for yaw-misaligned operation. For the cases tested, the MCMC-calibrated parameters reduce the total error of the power predictions by roughly 50% compared to the deterministic empirical model predictions. An additional benefit of the data-driven parameter estimation is the quantification of uncertainty, which enables physically quantified confidence intervals of wake model predictions.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"21 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0163896","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-fidelity wake models are used for wind farm design and control optimization. To generalize to a wind farm model, individually modeled wakes are commonly superimposed using approximate superposition models. Wake models parameterize atmospheric and wake turbulence, introducing unknown model parameters that historically are tuned with idealized simulation or experimental data and neglect uncertainty. We calibrate and estimate the uncertainty of the parameters in a Gaussian wake model using Markov chain Monte Carlo (MCMC) for various wake superposition methods. Posterior distributions of the uncertain parameters are generated using power production data from large eddy simulations and a utility-scale wake steering field experiment. The posteriors for the wake expansion coefficient are sensitive to the choice of superposition method, with relative differences in the means and standard deviations on the order of 100%. This sensitivity illustrates the role of superposition methods in wake modeling error. We compare these data-driven parameter estimates to estimates derived from a standard turbulence-intensity based model as a baseline. To assess predictive accuracy, we calibrate the data-driven parameter estimates with a training dataset for yaw-aligned operation. Using a Monte Carlo approach, we then generate predicted distributions of turbine power production and evaluate against a hold-out test dataset for yaw-misaligned operation. For the cases tested, the MCMC-calibrated parameters reduce the total error of the power predictions by roughly 50% compared to the deterministic empirical model predictions. An additional benefit of the data-driven parameter estimation is the quantification of uncertainty, which enables physically quantified confidence intervals of wake model predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动尾流模型参数估计,分析尾流叠加效应
低保真尾流模型用于风电场设计和控制优化。为了推广到风电场模型,单独建模的尾迹通常使用近似叠加模型进行叠加。尾流模型参数化大气和尾流湍流,引入未知的模型参数,这些参数在历史上是用理想化的模拟或实验数据调整的,忽略了不确定性。本文利用马尔可夫链蒙特卡罗(MCMC)方法对不同尾流叠加方法的高斯尾流模型参数的不确定性进行了校正和估计。利用大涡模拟和公用事业规模尾流转向场实验的电力生产数据,生成了不确定参数的后验分布。尾迹膨胀系数的后方差对叠加方法的选择比较敏感,均值和标准差的相对差异在100%左右。这种灵敏度说明了叠加方法在尾流建模误差中的作用。我们将这些数据驱动的参数估计与基于标准湍流强度模型的估计作为基线进行比较。为了评估预测精度,我们使用偏航对齐操作的训练数据集校准数据驱动的参数估计。然后,使用蒙特卡罗方法,我们生成涡轮机功率生产的预测分布,并针对偏航失调操作的保留测试数据集进行评估。对于测试的案例,与确定性经验模型预测相比,mcmc校准的参数将功率预测的总误差减少了大约50%。数据驱动参数估计的另一个好处是不确定性的量化,这使得尾流模型预测的物理量化置信区间成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode Case study of a bore wind-ramp event from lidar measurements and HRRR simulations over ARM Southern Great Plains Barriers and variable spacing enhance convective cooling and increase power output in solar PV plants Two three-dimensional super-Gaussian wake models for hilly terrain Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1