Dong-Jun Lee, Jung-Min Kim, Chul-Soo Jeong, Sangrok Jin
{"title":"Design and Dynamic Characteristics Analysis of Rotating Welding Torch with Ball Joint Type Mechanical Seal structure","authors":"Dong-Jun Lee, Jung-Min Kim, Chul-Soo Jeong, Sangrok Jin","doi":"10.7736/jkspe.023.063","DOIUrl":null,"url":null,"abstract":"This paper proposes a new rotary welding torch with a ball-jointed mechanical seal structure that simultaneously realizes the enclosure of CO₂ gas, the energization of welding current, and the insulation for system protection. In order to effectively compare the operation mechanism of the proposed device with the conventional rotary welding torch, a schematic technique is introduced to clearly visualize the operation and connection structure of the model. The kinematic state and constraint degrees of freedom of the tool are clearly shown, and it is easy to distinguish between the two designs that use different component parts and connection structures but result in the same final motion. In addition, the four dynamic characteristics of a rotary torch operating at 20 Hz (driving torque, vibration reaction force, natural frequency, and inertial mismatch) were analyzed to demonstrate superior performance to conventional products. The welding test showed that the tool normally operated even in a harsh welding environment, verifying its applicability in the field.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":"71 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new rotary welding torch with a ball-jointed mechanical seal structure that simultaneously realizes the enclosure of CO₂ gas, the energization of welding current, and the insulation for system protection. In order to effectively compare the operation mechanism of the proposed device with the conventional rotary welding torch, a schematic technique is introduced to clearly visualize the operation and connection structure of the model. The kinematic state and constraint degrees of freedom of the tool are clearly shown, and it is easy to distinguish between the two designs that use different component parts and connection structures but result in the same final motion. In addition, the four dynamic characteristics of a rotary torch operating at 20 Hz (driving torque, vibration reaction force, natural frequency, and inertial mismatch) were analyzed to demonstrate superior performance to conventional products. The welding test showed that the tool normally operated even in a harsh welding environment, verifying its applicability in the field.
期刊介绍:
Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.