Design and Dynamic Characteristics Analysis of Rotating Welding Torch with Ball Joint Type Mechanical Seal structure

Dong-Jun Lee, Jung-Min Kim, Chul-Soo Jeong, Sangrok Jin
{"title":"Design and Dynamic Characteristics Analysis of Rotating Welding Torch with Ball Joint Type Mechanical Seal structure","authors":"Dong-Jun Lee, Jung-Min Kim, Chul-Soo Jeong, Sangrok Jin","doi":"10.7736/jkspe.023.063","DOIUrl":null,"url":null,"abstract":"This paper proposes a new rotary welding torch with a ball-jointed mechanical seal structure that simultaneously realizes the enclosure of CO₂ gas, the energization of welding current, and the insulation for system protection. In order to effectively compare the operation mechanism of the proposed device with the conventional rotary welding torch, a schematic technique is introduced to clearly visualize the operation and connection structure of the model. The kinematic state and constraint degrees of freedom of the tool are clearly shown, and it is easy to distinguish between the two designs that use different component parts and connection structures but result in the same final motion. In addition, the four dynamic characteristics of a rotary torch operating at 20 Hz (driving torque, vibration reaction force, natural frequency, and inertial mismatch) were analyzed to demonstrate superior performance to conventional products. The welding test showed that the tool normally operated even in a harsh welding environment, verifying its applicability in the field.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new rotary welding torch with a ball-jointed mechanical seal structure that simultaneously realizes the enclosure of CO₂ gas, the energization of welding current, and the insulation for system protection. In order to effectively compare the operation mechanism of the proposed device with the conventional rotary welding torch, a schematic technique is introduced to clearly visualize the operation and connection structure of the model. The kinematic state and constraint degrees of freedom of the tool are clearly shown, and it is easy to distinguish between the two designs that use different component parts and connection structures but result in the same final motion. In addition, the four dynamic characteristics of a rotary torch operating at 20 Hz (driving torque, vibration reaction force, natural frequency, and inertial mismatch) were analyzed to demonstrate superior performance to conventional products. The welding test showed that the tool normally operated even in a harsh welding environment, verifying its applicability in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球接头式机械密封结构旋转焊枪设计及动态特性分析
本文提出了一种采用球接式机械密封结构的新型旋转焊炬,同时实现了CO₂气体的封闭、焊接电流的通电和系统保护的绝缘。为了有效地将该装置的工作机理与传统的旋转焊枪进行比较,采用原理图技术将模型的工作原理和连接结构清晰地可视化。清晰地显示了刀具的运动状态和约束自由度,并且易于区分使用不同部件和连接结构但最终运动相同的两种设计。此外,分析了在20 Hz下工作的旋转火炬的四个动态特性(驱动扭矩、振动反力、固有频率和惯性失配),证明了其优于传统产品的性能。焊接试验表明,该工具即使在恶劣的焊接环境下也能正常工作,验证了其在现场的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Korean Society for Precision Engineering
Journal of the Korean Society for Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.50
自引率
0.00%
发文量
104
期刊介绍: Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.
期刊最新文献
Fabrication of Magneto-responsive Functional Surface through Removal of Residual Layer Development of Rotation and Pull-back Drive System of Catheter for Vascular Treatment Evaluation of the Manufacturing and Viral Killing Efficacy of Chitosan Microbeads Loaded with Disinfectants Micro-hole Array Ceria Functional Layer Embedded Membrane for Durable Polymer Electrolyte Membrane Fuel Cell Hybrid Triboelectric-piezoelectric Energy Harvester Utilizing Nanopatterned Film and Piezoelectric Elastomeric Sponge Layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1