{"title":"Impact of organic peroxide on a moderate molecular weight homo-polypropylene vis breaking, and mechanism of interaction","authors":"M. Abd El-Wahab, M.G. El-Desouky","doi":"10.3233/mgc-230024","DOIUrl":null,"url":null,"abstract":"In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgc-230024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we show that organic peroxide is a useful tool for breaking the viscosity or chain of polypropylene during melt processing to provide a regulated rheology product. Reactive extrusion is used to crosslink peroxide and combine it with polypropylene (PP). To achieve end-use applications with performance targets, stabilizers are required to preserve the polymer’s initial strength, flexibility, and toughness properties. Other additives are added to PP in addition to stabilization in order to enhance or change certain of its properties. With the addition of varying levels of organic peroxide [2,5-Dimethyl-2,5-di (tert-butyl peroxy) hexane]. The use of peroxide in the manufacturing process of polypropylene is a method of breaking in the polymer chains, which can affect its properties, including its MFI. It is possible that increasing the amount of peroxide used leads to a higher degree of branching or cross-linking, which in turn leads to a higher MFI value. However, it is important to note that the relationship between the amount of peroxide used and the resulting MFI values may not be linear and may depend on other factors as well. In addition to the MFI, other properties of the polypropylene were also measured, including shear and melt flow index, melting and crystallization temperatures, flexural and tensile moduli, and yield stress. These properties are important for understanding the mechanical and thermal behavior of the polymer and can be used to optimize its performance for specific applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.