{"title":"Evaluation of drastic temperature change on temperature stress of asphalt mixture during microwave deicing","authors":"Yu Zhao, Xiaoming Liu, Daxiong Yan","doi":"10.1080/14680629.2023.2278184","DOIUrl":null,"url":null,"abstract":"AbstractMicrowave deicing is an efficient and environment-friendly technology for asphalt pavement. Previous studies have shown that silicon carbide can improve the deicing efficiency of pavement, but the influence of drastic temperature change during microwave deicing on the temperature stress and temperature fatigue life is undefined. In this study, the temperature stress during heating and cooling were analysed by numerical simulation, and the mechanism of stress change was discussed. Finally, the temperature fatigue performance of pavement was evaluated. The simulation results showed that an increase in the temperature rising rate did not necessarily increase the temperature stress, and there was no stress accumulation after microwave deicing. The temperature stress was affected by both the temperature change rate and the heat transfer performance, and good heat transfer performance of asphalt mixture could reduce the temperature stress. Besides, the drastic temperature change did not necessarily reduce the temperature fatigue life of pavement.KEYWORDS: Asphalt mixture containing silicon carbide aggregatetemperature change ratetemperature stress and straintemperature fatigue lifemicrowave heating AcknowledgementsThe authors are grateful for technical support from the High Performance Computing Center of Central South University and thank Yecheng Fan from Shiyanjia Lab (www.shiyanjia.com) for the electromagnetic parameters of SiC analysis.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China: [Grant Number 52078499]; Natural Science Foundation of Hunan Province: [Grant Number 2022JJ30730]; Science and Technology Program of Hunan Province: [Grant Number No. 202246].","PeriodicalId":21475,"journal":{"name":"Road Materials and Pavement Design","volume":"87 14","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Road Materials and Pavement Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14680629.2023.2278184","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractMicrowave deicing is an efficient and environment-friendly technology for asphalt pavement. Previous studies have shown that silicon carbide can improve the deicing efficiency of pavement, but the influence of drastic temperature change during microwave deicing on the temperature stress and temperature fatigue life is undefined. In this study, the temperature stress during heating and cooling were analysed by numerical simulation, and the mechanism of stress change was discussed. Finally, the temperature fatigue performance of pavement was evaluated. The simulation results showed that an increase in the temperature rising rate did not necessarily increase the temperature stress, and there was no stress accumulation after microwave deicing. The temperature stress was affected by both the temperature change rate and the heat transfer performance, and good heat transfer performance of asphalt mixture could reduce the temperature stress. Besides, the drastic temperature change did not necessarily reduce the temperature fatigue life of pavement.KEYWORDS: Asphalt mixture containing silicon carbide aggregatetemperature change ratetemperature stress and straintemperature fatigue lifemicrowave heating AcknowledgementsThe authors are grateful for technical support from the High Performance Computing Center of Central South University and thank Yecheng Fan from Shiyanjia Lab (www.shiyanjia.com) for the electromagnetic parameters of SiC analysis.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by National Natural Science Foundation of China: [Grant Number 52078499]; Natural Science Foundation of Hunan Province: [Grant Number 2022JJ30730]; Science and Technology Program of Hunan Province: [Grant Number No. 202246].
期刊介绍:
The international journal Road Materials and Pavement Design welcomes contributions on mechanical, thermal, chemical and/or physical properties and characteristics of bitumens, additives, bituminous mixes, asphalt concrete, cement concrete, unbound granular materials, soils, geo-composites, new and innovative materials, as well as mix design, soil stabilization, and environmental aspects of handling and re-use of road materials.
The Journal also intends to offer a platform for the publication of research of immediate interest regarding design and modeling of pavement behavior and performance, structural evaluation, stress, strain and thermal characterization and/or calculation, vehicle/road interaction, climatic effects and numerical and analytical modeling. The different layers of the road, including the soil, are considered. Emerging topics, such as new sensing methods, machine learning, smart materials and smart city pavement infrastructure are also encouraged.
Contributions in the areas of airfield pavements and rail track infrastructures as well as new emerging modes of surface transportation are also welcome.