{"title":"Big Earth Data for quantitative measurement of community resilience: current challenges, progresses and future directions","authors":"Yi Qiang, Lei Zou, Heng Cai","doi":"10.1080/20964471.2023.2273594","DOIUrl":null,"url":null,"abstract":"Quantitative assessment of community resilience can provide support for hazard mitigation, disaster risk reduction, disaster relief, and long-term sustainable development. Traditional resilience assessment tools are mostly theory-driven and lack empirical validation, which impedes scientific understanding of community resilience and practical decision-making of resilience improvement. In the advent of the Big Data Era, the increasing data availability and advances in computing and modeling techniques offer new opportunities to understand, measure, and promote community resilience. This article provides a comprehensive review of the definitions of community resilience, along with the traditional and emerging data and methods of quantitative resilience measurement. The theoretical bases, modeling principles, advantages, and disadvantages of the methods are discussed. Finally, we point out research avenues to overcome the existing challenges and develop robust methods to measure and promote community resilience. This article establishes guidance for scientists to further advance disaster research and for planners and policymakers to design actionable tools to develop sustainable and resilient communities.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"75 12","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20964471.2023.2273594","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative assessment of community resilience can provide support for hazard mitigation, disaster risk reduction, disaster relief, and long-term sustainable development. Traditional resilience assessment tools are mostly theory-driven and lack empirical validation, which impedes scientific understanding of community resilience and practical decision-making of resilience improvement. In the advent of the Big Data Era, the increasing data availability and advances in computing and modeling techniques offer new opportunities to understand, measure, and promote community resilience. This article provides a comprehensive review of the definitions of community resilience, along with the traditional and emerging data and methods of quantitative resilience measurement. The theoretical bases, modeling principles, advantages, and disadvantages of the methods are discussed. Finally, we point out research avenues to overcome the existing challenges and develop robust methods to measure and promote community resilience. This article establishes guidance for scientists to further advance disaster research and for planners and policymakers to design actionable tools to develop sustainable and resilient communities.