Big Earth Data for quantitative measurement of community resilience: current challenges, progresses and future directions

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2023-11-05 DOI:10.1080/20964471.2023.2273594
Yi Qiang, Lei Zou, Heng Cai
{"title":"Big Earth Data for quantitative measurement of community resilience: current challenges, progresses and future directions","authors":"Yi Qiang, Lei Zou, Heng Cai","doi":"10.1080/20964471.2023.2273594","DOIUrl":null,"url":null,"abstract":"Quantitative assessment of community resilience can provide support for hazard mitigation, disaster risk reduction, disaster relief, and long-term sustainable development. Traditional resilience assessment tools are mostly theory-driven and lack empirical validation, which impedes scientific understanding of community resilience and practical decision-making of resilience improvement. In the advent of the Big Data Era, the increasing data availability and advances in computing and modeling techniques offer new opportunities to understand, measure, and promote community resilience. This article provides a comprehensive review of the definitions of community resilience, along with the traditional and emerging data and methods of quantitative resilience measurement. The theoretical bases, modeling principles, advantages, and disadvantages of the methods are discussed. Finally, we point out research avenues to overcome the existing challenges and develop robust methods to measure and promote community resilience. This article establishes guidance for scientists to further advance disaster research and for planners and policymakers to design actionable tools to develop sustainable and resilient communities.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"75 12","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20964471.2023.2273594","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative assessment of community resilience can provide support for hazard mitigation, disaster risk reduction, disaster relief, and long-term sustainable development. Traditional resilience assessment tools are mostly theory-driven and lack empirical validation, which impedes scientific understanding of community resilience and practical decision-making of resilience improvement. In the advent of the Big Data Era, the increasing data availability and advances in computing and modeling techniques offer new opportunities to understand, measure, and promote community resilience. This article provides a comprehensive review of the definitions of community resilience, along with the traditional and emerging data and methods of quantitative resilience measurement. The theoretical bases, modeling principles, advantages, and disadvantages of the methods are discussed. Finally, we point out research avenues to overcome the existing challenges and develop robust methods to measure and promote community resilience. This article establishes guidance for scientists to further advance disaster research and for planners and policymakers to design actionable tools to develop sustainable and resilient communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区恢复力定量测量的大地球数据:当前挑战、进展和未来方向
社区复原力的定量评估可为减轻灾害、减少灾害风险、救灾和长期可持续发展提供支持。传统的弹性评估工具多为理论驱动,缺乏实证验证,阻碍了对社区弹性的科学认识和弹性改进的实践决策。随着大数据时代的到来,越来越多的数据可用性以及计算和建模技术的进步为理解、衡量和促进社区弹性提供了新的机会。本文全面回顾了社区弹性的定义,以及传统的和新兴的弹性定量测量数据和方法。讨论了各种方法的理论基础、建模原理、优缺点。最后,我们指出了克服现有挑战的研究途径,并开发了测量和促进社区恢复力的可靠方法。这篇文章为科学家进一步推进灾害研究以及为规划者和决策者设计可操作的工具来发展可持续和有弹性的社区提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1