Anand B. Mastiholi, B. Sowmya, H. P. Maheswarappa, Shruti P. Gondi, T. Shantappa, D. L. Rudresh, J. B. Gopali
{"title":"Organic and natural farming improve microbial diversity and dehydrogenase activity in clusterbean-tomato cropping sequence","authors":"Anand B. Mastiholi, B. Sowmya, H. P. Maheswarappa, Shruti P. Gondi, T. Shantappa, D. L. Rudresh, J. B. Gopali","doi":"10.1080/03650340.2023.2273899","DOIUrl":null,"url":null,"abstract":"ABSTRACTOrganic (OF) and natural farming (NF) may help to overcome drawbacks of chemical farming. A field experiment was conducted to investigate the microbial diversity and dehydrogenase activity in clusterbean-tomato cropping sequence with different farming systems over 3 years. An increase in bacterial population in OF (73.6%) and NF (55.4%) over conventional farming practice (PoP) and 90.8% (OF) and 62.1% (NF) over farmers’ practice (FP) was recorded. Fungal population in OF and NF increased by 32.8% and 12%, respectively over PoP and 76.8% (OF) and 47% (NF) over FP. Increase in actinomycetes population of 34% (OF) and 18.1% (NF) over PoP and 60.9% (OF) and 41.8% (NF) over FP was observed. Phosphate solubilizing microorganisms (PSM) population increased to 62.8% (OF) and 33.4% (NF) over PoP and 103.1% (OF) and 66.4% (NF) over FP. Population of N-Fixers also found enhanced in OF (31.4%) and NF (9.7%) compared to PoP and FP (OF: 97.4% and NF: 58%). The higher dehydrogenase activity of 41.4% (OF) and 25.5% (NF) was recorded over PoP and OF (62%) and NF (43.8%) over FP. It can be concluded that OF and NF enhanced microbial diversities and dehydrogenase activity.KEYWORDS: Actinomycetesnitrogen fixersPSMchemical farmingrhizosphere AcknowledgmentsAuthors acknowledge the Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India. Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India .","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"86 7","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2273899","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTOrganic (OF) and natural farming (NF) may help to overcome drawbacks of chemical farming. A field experiment was conducted to investigate the microbial diversity and dehydrogenase activity in clusterbean-tomato cropping sequence with different farming systems over 3 years. An increase in bacterial population in OF (73.6%) and NF (55.4%) over conventional farming practice (PoP) and 90.8% (OF) and 62.1% (NF) over farmers’ practice (FP) was recorded. Fungal population in OF and NF increased by 32.8% and 12%, respectively over PoP and 76.8% (OF) and 47% (NF) over FP. Increase in actinomycetes population of 34% (OF) and 18.1% (NF) over PoP and 60.9% (OF) and 41.8% (NF) over FP was observed. Phosphate solubilizing microorganisms (PSM) population increased to 62.8% (OF) and 33.4% (NF) over PoP and 103.1% (OF) and 66.4% (NF) over FP. Population of N-Fixers also found enhanced in OF (31.4%) and NF (9.7%) compared to PoP and FP (OF: 97.4% and NF: 58%). The higher dehydrogenase activity of 41.4% (OF) and 25.5% (NF) was recorded over PoP and OF (62%) and NF (43.8%) over FP. It can be concluded that OF and NF enhanced microbial diversities and dehydrogenase activity.KEYWORDS: Actinomycetesnitrogen fixersPSMchemical farmingrhizosphere AcknowledgmentsAuthors acknowledge the Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India. Natural Farming Project funded by Department of Agriculture, Government of Karnataka, India .
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.