J. August Ridenour, Brian L. Chaloux, Michelle D. Johannes, Matthew T. Finn, Heonjune Ryou, Albert Epshteyn
{"title":"High thermal stability 1D borophosphate proton conducting polyelectrolytes","authors":"J. August Ridenour, Brian L. Chaloux, Michelle D. Johannes, Matthew T. Finn, Heonjune Ryou, Albert Epshteyn","doi":"10.1557/s43580-023-00663-6","DOIUrl":null,"url":null,"abstract":"The ionic conductivity, thermal stability, and general viability for use as electrolytes in fuel cells are examined for two borophosphate polyelectrolyte compounds (e.g., sodium borophosphate (NaBOB, Na5[BOB(PO4)3)]) and ammonium borophosphate (NH4BOB, (NH4)3H2[BOB(PO4)3])). Bulk synthesis methods are presented for laboratory scale reactions (> 5 g) using low-temperature ionic liquid fluxes. Electrochemical impedance spectroscopy (EIS) was used to determine temperature-dependent ionic conductivities of the NH4BOB and NaBOB to be on the order of 2 µS cm−1 and 0.1 µS cm−1 at 200 °C, respectively. Although NH4BOB displays higher ionic conductivity compared to NaBOB at equivalent temperatures, thermal gravimetric analysis (TGA) shows much higher thermal stability for NaBOB, exhibiting no mass loss below 600 °C. The thermal stability of NaBOB was also assessed under reducing (~ 1 atm H2) conditions, finding no reductive thermal degradation below 400 °C. Ab initio molecular dynamics (AIMD) simulations show free proton (H+) movement is related to gyrational mobility of the polyanionic borophosphate chains.","PeriodicalId":19015,"journal":{"name":"MRS Advances","volume":"24 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43580-023-00663-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ionic conductivity, thermal stability, and general viability for use as electrolytes in fuel cells are examined for two borophosphate polyelectrolyte compounds (e.g., sodium borophosphate (NaBOB, Na5[BOB(PO4)3)]) and ammonium borophosphate (NH4BOB, (NH4)3H2[BOB(PO4)3])). Bulk synthesis methods are presented for laboratory scale reactions (> 5 g) using low-temperature ionic liquid fluxes. Electrochemical impedance spectroscopy (EIS) was used to determine temperature-dependent ionic conductivities of the NH4BOB and NaBOB to be on the order of 2 µS cm−1 and 0.1 µS cm−1 at 200 °C, respectively. Although NH4BOB displays higher ionic conductivity compared to NaBOB at equivalent temperatures, thermal gravimetric analysis (TGA) shows much higher thermal stability for NaBOB, exhibiting no mass loss below 600 °C. The thermal stability of NaBOB was also assessed under reducing (~ 1 atm H2) conditions, finding no reductive thermal degradation below 400 °C. Ab initio molecular dynamics (AIMD) simulations show free proton (H+) movement is related to gyrational mobility of the polyanionic borophosphate chains.