EVALUATION OF LIDAR ODOMETRY AND MAPPING BASED ON REFERENCE LASER SCANNING

J. Koszyk, P. Łabędź, K. Grzelka, A. Jasińska, K. Pargieła, A. Malczewska, K. Strząbała, M. Michalczak, Ł. Ambroziński
{"title":"EVALUATION OF LIDAR ODOMETRY AND MAPPING BASED ON REFERENCE LASER SCANNING","authors":"J. Koszyk, P. Łabędź, K. Grzelka, A. Jasińska, K. Pargieła, A. Malczewska, K. Strząbała, M. Michalczak, Ł. Ambroziński","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-79-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Simultaneous localization and mapping (SLAM) is essential for the robot to operate in an unknown, vast environment. LiDAR-based SLAM can be utilizable in environments where other sensors cannot deliver reliable measurements. Providing accurate map results requires particular attention due to deviations originating from the device. This study is aimed to assess LiDAR-based mapping quality in a vast environment. The measurements are conducted on a mobile platform. Accuracy of the map collected with the LeGO-LOAM method was performed by making a comparison to a map gathered with geodetic scanning using ICP. The results provided 60% of fitted points in a distance lower than 5 cm and 80% in a distance lower than 10 cm. The findings prove the mileage of the map created with this method for other tasks, including autonomous driving and semantic segmentation.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-79-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Simultaneous localization and mapping (SLAM) is essential for the robot to operate in an unknown, vast environment. LiDAR-based SLAM can be utilizable in environments where other sensors cannot deliver reliable measurements. Providing accurate map results requires particular attention due to deviations originating from the device. This study is aimed to assess LiDAR-based mapping quality in a vast environment. The measurements are conducted on a mobile platform. Accuracy of the map collected with the LeGO-LOAM method was performed by making a comparison to a map gathered with geodetic scanning using ICP. The results provided 60% of fitted points in a distance lower than 5 cm and 80% in a distance lower than 10 cm. The findings prove the mileage of the map created with this method for other tasks, including autonomous driving and semantic segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参考激光扫描的激光雷达测程和测绘评估
摘要同时定位和测绘(SLAM)是机器人在未知的广阔环境中运行的必要条件。基于激光雷达的SLAM可用于其他传感器无法提供可靠测量的环境。由于设备产生的偏差,提供准确的地图结果需要特别注意。本研究旨在评估广阔环境下基于lidar的制图质量。测量是在移动平台上进行的。通过将LeGO-LOAM方法收集的地图与使用ICP进行大地测量扫描收集的地图进行比较,来确定地图的准确性。结果显示,60%的拟合点的距离小于5厘米,80%的拟合点的距离小于10厘米。研究结果证明,用这种方法创建的地图的里程可以用于其他任务,包括自动驾驶和语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1