DESIGNING AND EVALUATING A PORTABLE LIDAR-BASED SLAM SYSTEM

P. Trybała, P. Kujawa, K. Romańczukiewicz, A. Szrek, F. Remondino
{"title":"DESIGNING AND EVALUATING A PORTABLE LIDAR-BASED SLAM SYSTEM","authors":"P. Trybała, P. Kujawa, K. Romańczukiewicz, A. Szrek, F. Remondino","doi":"10.5194/isprs-archives-xlviii-1-w3-2023-191-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Mobile Mapping Technology (MMT) has evolved rapidly over the past few decades, especially in using low-cost sensors. This progress is primarily attributed to the appearance of innovative simultaneous localization and mapping (SLAM) algorithms. This article focuses on evaluating the efficiency of a new LiDAR-based portable SLAM system for mapping in dynamic real-world environments. The work proposed a technical solution based on a Livox Avia LiDAR sensor enhanced by gimbal stabilization. The system, named Portable Livox-based Mapping system (PoLiMap), is compared to other similar solutions by acquiring data from various environments, including urban sceneries, underground tunnels and forested areas, and processing them using a modified FAST-LIO-SLAM algorithm. The research presented in the article contributes to the understanding of the capabilities of PoLiMap systems under various conditions and offers significant insight into its potential applications. Accuracy evaluation results prove that the proposed MMT system can successfully tackle various demanding environments and challenge the results of other more costly state-of-the-art portable mobile laser scanning methods.","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-w3-2023-191-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Mobile Mapping Technology (MMT) has evolved rapidly over the past few decades, especially in using low-cost sensors. This progress is primarily attributed to the appearance of innovative simultaneous localization and mapping (SLAM) algorithms. This article focuses on evaluating the efficiency of a new LiDAR-based portable SLAM system for mapping in dynamic real-world environments. The work proposed a technical solution based on a Livox Avia LiDAR sensor enhanced by gimbal stabilization. The system, named Portable Livox-based Mapping system (PoLiMap), is compared to other similar solutions by acquiring data from various environments, including urban sceneries, underground tunnels and forested areas, and processing them using a modified FAST-LIO-SLAM algorithm. The research presented in the article contributes to the understanding of the capabilities of PoLiMap systems under various conditions and offers significant insight into its potential applications. Accuracy evaluation results prove that the proposed MMT system can successfully tackle various demanding environments and challenge the results of other more costly state-of-the-art portable mobile laser scanning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光雷达的便携式撞击系统的设计与评估
摘要移动地图技术(MMT)在过去几十年中发展迅速,特别是在使用低成本传感器方面。这一进展主要归功于创新的同步定位和地图绘制(SLAM)算法的出现。本文着重于评估一种新的基于lidar的便携式SLAM系统在动态现实环境中的映射效率。该工作提出了一种基于Livox Avia激光雷达传感器的技术解决方案,该传感器通过框架稳定增强。该系统名为便携式Livox-based Mapping system (PoLiMap),通过从各种环境(包括城市景观、地下隧道和森林地区)获取数据,并使用改进的fast - livox - slam算法对数据进行处理,与其他类似解决方案进行了比较。本文中介绍的研究有助于理解PoLiMap系统在各种条件下的功能,并对其潜在应用提供了重要的见解。精度评估结果证明,所提出的MMT系统可以成功应对各种苛刻的环境,并挑战其他更昂贵的最先进的便携式移动激光扫描方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1