Semiclassical theory and the Koopman-van Hove equation

Ilon Joseph
{"title":"Semiclassical theory and the Koopman-van Hove equation","authors":"Ilon Joseph","doi":"10.1088/1751-8121/ad0533","DOIUrl":null,"url":null,"abstract":"Abstract The phase space Koopman-van Hove (KvH) equation can be derived from the asymptotic semiclassical analysis of partial differential equations.
Semiclassical theory yields the Hamilton-Jacobi equation for the complex phase factor and the transport equation for the amplitude.
These two equations can be combined to form a nonlinear semiclassical version of the KvH equation in configuration space.
Every solution of the configuration space KvH equation satisfies both the semiclassical phase space KvH equation and the Hamilton-Jacobi constraint.
For configuration space solutions, this constraint resolves the paradox that there are two different conserved densities in phase space.
For integrable systems, the KvH spectrum is the Cartesian product of a classical and a semiclassical spectrum.
If the classical spectrum is eliminated, then, with the correct choice of Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
matching conditions, the semiclassical spectrum satisfies the Einstein-Brillouin-Keller quantization conditions which include the correction due to the Maslov index.
However, semiclassical analysis uses different choices for boundary conditions, continuity requirements, and the domain of definition. 
For example, use of the complex JWKB method allows for the treatment of tunneling through the complexification of phase space.
Finally, although KvH wavefunctions include the possibility of interference effects, interference is not observable when all observables are 
approximated as local operators on phase space.
Observing interference effects requires consideration of nonlocal operations, e.g. through higher orders in the asymptotic theory.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The phase space Koopman-van Hove (KvH) equation can be derived from the asymptotic semiclassical analysis of partial differential equations.
Semiclassical theory yields the Hamilton-Jacobi equation for the complex phase factor and the transport equation for the amplitude.
These two equations can be combined to form a nonlinear semiclassical version of the KvH equation in configuration space.
Every solution of the configuration space KvH equation satisfies both the semiclassical phase space KvH equation and the Hamilton-Jacobi constraint.
For configuration space solutions, this constraint resolves the paradox that there are two different conserved densities in phase space.
For integrable systems, the KvH spectrum is the Cartesian product of a classical and a semiclassical spectrum.
If the classical spectrum is eliminated, then, with the correct choice of Jeffreys-Wentzel-Kramers-Brillouin (JWKB)
matching conditions, the semiclassical spectrum satisfies the Einstein-Brillouin-Keller quantization conditions which include the correction due to the Maslov index.
However, semiclassical analysis uses different choices for boundary conditions, continuity requirements, and the domain of definition. 
For example, use of the complex JWKB method allows for the treatment of tunneling through the complexification of phase space.
Finally, although KvH wavefunctions include the possibility of interference effects, interference is not observable when all observables are 
approximated as local operators on phase space.
Observing interference effects requires consideration of nonlocal operations, e.g. through higher orders in the asymptotic theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半经典理论和库普曼-范霍夫方程
摘要:相空间Koopman-van Hove (KvH)方程可以通过对偏微分方程的渐近半经典分析得到。半经典理论得到复相因子的Hamilton-Jacobi方程和振幅的输运方程。这两个方程可以组合成构型空间中KvH方程的非线性半经典版本。构型空间KvH方程的每一个解都满足这两个方程对于组态空间解,该约束解决了相空间中存在两种不同的守恒密度的悖论;对于可积系统,KvH谱是经典谱与半经典谱的笛卡尔积;对于可积系统,如果消除经典谱,则在正确选择Jeffreys-Wentzel-Kramers-Brillouin (JWKB)匹配条件的情况下,半经典谱满足爱因斯坦-布里渊-凯勒量化条件,其中包括马斯洛夫指数的校正。然而,半经典分析对边界条件、连续性要求和定义域使用了不同的选择。例如,使用复JWKB方法可以通过相空间的复化来处理隧道。最后,虽然KvH波函数包括干涉效应的可能性,但当所有可观测值都近似为相空间上的局部算符时,干涉是不可观测的。观察干涉效应需要考虑非局部操作,例如通过渐近理论中的高阶操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laplace transformations and sine-Gordon type integrable PDE Quantum curl forces Using a resource theoretic perspective to witness and engineer quantum generalized contextuality for prepare-and-measure scenarios Lower bound on operation time of composite quantum gates robust against pulse length error Coagulation equations with source leading to anomalousself-similarity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1