The Effect of the Addition of Aluminum Nitride to the Composition of NiAl2O4 Ceramics on Hydrogenation Processes and the Increase in Resistance to Swelling and Degradation

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-10-19 DOI:10.3390/ceramics6040127
Artem L. Kozlovskiy
{"title":"The Effect of the Addition of Aluminum Nitride to the Composition of NiAl2O4 Ceramics on Hydrogenation Processes and the Increase in Resistance to Swelling and Degradation","authors":"Artem L. Kozlovskiy","doi":"10.3390/ceramics6040127","DOIUrl":null,"url":null,"abstract":"This work examines the effects of the formation of impurity inclusions in the structure of NiAl2O4 ceramics when aluminum nitride is added to them and the occurrence of a reinforcement effect that prevents hydrogenation processes and the subsequent destruction of conductive and thermophysical characteristics. The appeal of ceramics possessing a spinel crystal structure lies in their potential use as ceramic fuel cells for both hydrogen generation and storage. Simultaneously, addressing the challenges related to ceramic degradation during hydrogenation, a critical aspect of hydrogen production, can enhance the efficiency of these ceramics while lowering electricity production costs. The selection of aluminum nitride as an additive for ceramic modification is based on its remarkable resistance to structural damage accumulation, its potential to enhance resistance to high-temperature degradation, and its ability to bolster strength properties. Moreover, an examination of the alterations in the strength characteristics of the examined samples subjected to hydrogenation reveals that the stability of two-phase ceramics is enhanced by more than three to five times compared to the initial ceramics (those without the addition of AlN). Additionally, it was noted that the most significant alterations in both structure and strength become apparent at irradiation fluences exceeding 1014 proton/cm2, where atomic displacements in the damaged ceramic layer reach over 5 dpa. During the evaluation of thermophysical properties, it was discerned that ceramics featuring an impurity phase in their composition exhibit the highest stability. These ceramics demonstrated a reduction in the thermal conductivity coefficient of less than 1% at the peak irradiation fluence.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":"12 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6040127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the effects of the formation of impurity inclusions in the structure of NiAl2O4 ceramics when aluminum nitride is added to them and the occurrence of a reinforcement effect that prevents hydrogenation processes and the subsequent destruction of conductive and thermophysical characteristics. The appeal of ceramics possessing a spinel crystal structure lies in their potential use as ceramic fuel cells for both hydrogen generation and storage. Simultaneously, addressing the challenges related to ceramic degradation during hydrogenation, a critical aspect of hydrogen production, can enhance the efficiency of these ceramics while lowering electricity production costs. The selection of aluminum nitride as an additive for ceramic modification is based on its remarkable resistance to structural damage accumulation, its potential to enhance resistance to high-temperature degradation, and its ability to bolster strength properties. Moreover, an examination of the alterations in the strength characteristics of the examined samples subjected to hydrogenation reveals that the stability of two-phase ceramics is enhanced by more than three to five times compared to the initial ceramics (those without the addition of AlN). Additionally, it was noted that the most significant alterations in both structure and strength become apparent at irradiation fluences exceeding 1014 proton/cm2, where atomic displacements in the damaged ceramic layer reach over 5 dpa. During the evaluation of thermophysical properties, it was discerned that ceramics featuring an impurity phase in their composition exhibit the highest stability. These ceramics demonstrated a reduction in the thermal conductivity coefficient of less than 1% at the peak irradiation fluence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化铝对NiAl2O4陶瓷加氢过程及抗膨胀降解性能的影响
本研究考察了添加氮化铝对NiAl2O4陶瓷结构中杂质夹杂物形成的影响,以及防止氢化过程和随后对导电和热物理特性的破坏的增强效应的发生。具有尖晶石晶体结构的陶瓷的吸引力在于它们作为陶瓷燃料电池的潜在用途,既可以产生氢,也可以储存氢。同时,解决与氢化过程中陶瓷降解相关的挑战(氢生产的一个关键方面)可以提高这些陶瓷的效率,同时降低电力生产成本。选择氮化铝作为陶瓷改性添加剂是基于其显著的抗结构损伤积累能力,增强耐高温降解能力的潜力,以及增强强度性能的能力。此外,对加氢处理样品强度特性变化的研究表明,与初始陶瓷(未添加AlN的陶瓷)相比,两相陶瓷的稳定性提高了三到五倍以上。此外,还指出,在辐照影响超过1014质子/平方厘米时,结构和强度的最显著变化变得明显,损坏陶瓷层中的原子位移达到5dpa以上。在热物理性质的评估中,发现在其组成中含有杂质相的陶瓷表现出最高的稳定性。这些陶瓷表明,在峰值辐照影响下,导热系数降低不到1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1