Likelihood-based Inference under Non-Convex Boundary Constraints

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-10-19 DOI:10.1093/biomet/asad062
J Y Wang, Z S YE, Y Chen
{"title":"Likelihood-based Inference under Non-Convex Boundary Constraints","authors":"J Y Wang, Z S YE, Y Chen","doi":"10.1093/biomet/asad062","DOIUrl":null,"url":null,"abstract":"Summary Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space. We further derive the asymptotic distribution of the likelihood ratio test statistic under nonconvex constraints on model parameters. A general Monte Carlo procedure for generating the limiting distribution is provided. The theoretical results are demonstrated by five examples in Anderson’s stereotype logistic regression model, genetic association studies, gene-environment interaction tests, cost-constrained linear regression and fairness-constrained linear regression.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space. We further derive the asymptotic distribution of the likelihood ratio test statistic under nonconvex constraints on model parameters. A general Monte Carlo procedure for generating the limiting distribution is provided. The theoretical results are demonstrated by five examples in Anderson’s stereotype logistic regression model, genetic association studies, gene-environment interaction tests, cost-constrained linear regression and fairness-constrained linear regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非凸边界约束下基于似然的推理
基于模型参数非凸约束的似然推理在生物医学研究中越来越普遍。本文建立了真参数值位于非凸参数空间边界时最大似然估计量的大样本性质。进一步推导了模型参数非凸约束下似然比检验统计量的渐近分布。给出了生成极限分布的一般蒙特卡罗程序。通过安德森的刻板印象逻辑回归模型、遗传关联研究、基因-环境交互作用检验、成本约束线性回归和公平约束线性回归五个实例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1