Antimicrobial Peptides and Their Assemblies

Ana Maria Carmona-Ribeiro
{"title":"Antimicrobial Peptides and Their Assemblies","authors":"Ana Maria Carmona-Ribeiro","doi":"10.3390/futurepharmacol3040047","DOIUrl":null,"url":null,"abstract":"Antibiotic resistance requires alternatives to fight multi-drug resistant strains. Antimicrobial peptides (AMPs) act by disrupting or solubilizing microbial cell walls or membranes in accordance with mechanisms difficult to counteract from the microbe’s point of view. In this review, structure–activity relationships for AMPs and their assemblies are discussed, considering not only their self-assembly but also their interactions with their carriers for optimal delivery or their combinations with other complementary antimicrobials or moieties covalently bound to their chemical structure. The effect of the formulations on AMP activity is also evaluated, revealing a myriad of possibilities. Depending on the interaction forces between the AMP, the carrier, or the elements added to the formulations, AMP activity can be reduced, enhanced, or remain unaffected. Approaches protecting AMPs against proteolysis may also reduce their activity.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol3040047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance requires alternatives to fight multi-drug resistant strains. Antimicrobial peptides (AMPs) act by disrupting or solubilizing microbial cell walls or membranes in accordance with mechanisms difficult to counteract from the microbe’s point of view. In this review, structure–activity relationships for AMPs and their assemblies are discussed, considering not only their self-assembly but also their interactions with their carriers for optimal delivery or their combinations with other complementary antimicrobials or moieties covalently bound to their chemical structure. The effect of the formulations on AMP activity is also evaluated, revealing a myriad of possibilities. Depending on the interaction forces between the AMP, the carrier, or the elements added to the formulations, AMP activity can be reduced, enhanced, or remain unaffected. Approaches protecting AMPs against proteolysis may also reduce their activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗菌肽及其组装
抗生素耐药性需要替代方案来对抗多重耐药菌株。抗菌肽(AMPs)的作用是破坏或溶解微生物细胞壁或细胞膜,其机制很难从微生物的角度进行抵消。本文讨论了抗菌肽及其组装体的结构-活性关系,不仅考虑了它们的自组装,还考虑了它们与载体的相互作用以获得最佳递送,或者它们与其他互补抗菌素或与其化学结构共价结合的部分的组合。还评估了配方对AMP活性的影响,揭示了无数的可能性。根据AMP、载体或添加到配方中的元素之间的相互作用力,AMP的活性可以降低、增强或保持不受影响。保护amp免受蛋白水解的方法也可能降低其活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents Biologics, Small Molecules and More in Inflammatory Bowel Disease: The Present and the Future Comparative Study of the Effects of Curcuminoids and Tetrahydrocurcuminoids on Melanogenesis: Role of the Methoxy Groups Using 5-Nitroimidazole Derivatives against Neglected Tropical Protozoan Diseases: Systematic Review Target-Based 6-5 Fused Ring Heterocyclic Scaffolds Display Broad Antiparasitic Potency In Vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1