E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko, R. Dudzak, P. Koester, G. Zeraouli, D. Mancelli, F. Baffigi, L. A. Gizzi, S. A. Pikuz, Ph.D. Nicolaï, N. C. Woolsey, R. Fedosejevs, M. Krus, L. Juha, D. Batani, O. Renner, G. Cristoforetti
{"title":"Characterization of hot electrons generated by laser–plasma interaction at shock ignition intensities","authors":"E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko, R. Dudzak, P. Koester, G. Zeraouli, D. Mancelli, F. Baffigi, L. A. Gizzi, S. A. Pikuz, Ph.D. Nicolaï, N. C. Woolsey, R. Fedosejevs, M. Krus, L. Juha, D. Batani, O. Renner, G. Cristoforetti","doi":"10.1063/5.0157168","DOIUrl":null,"url":null,"abstract":"In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions (I > 1016 W/cm2), the heating and transport of hot electrons were studied by using several complementary diagnostics, i.e., Kα time-resolved imaging, hard x-ray filtering (a bremsstrahlung cannon), and electron spectroscopy. Ablators with differing composition from low Z (parylene N) to high Z (nickel) were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation. The variety of available diagnostics allowed full characterization of the population of hot electrons, retrieving their conversion efficiency, time generation and duration, temperature, and angular divergence. The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments. Based on the measured data, the advantages, reliability, and complementarity of the experimental diagnostics are discussed.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"38 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0157168","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions (I > 1016 W/cm2), the heating and transport of hot electrons were studied by using several complementary diagnostics, i.e., Kα time-resolved imaging, hard x-ray filtering (a bremsstrahlung cannon), and electron spectroscopy. Ablators with differing composition from low Z (parylene N) to high Z (nickel) were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation. The variety of available diagnostics allowed full characterization of the population of hot electrons, retrieving their conversion efficiency, time generation and duration, temperature, and angular divergence. The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments. Based on the measured data, the advantages, reliability, and complementarity of the experimental diagnostics are discussed.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.