Resource Allocation for IRS-Assisted Networks: A Deep Reinforcement Learning Approach

Sohail Ahmad, Saud Khan, Komal S. Khan, Faisal Naeem, Muhammad Tariq
{"title":"Resource Allocation for IRS-Assisted Networks: A Deep Reinforcement Learning Approach","authors":"Sohail Ahmad, Saud Khan, Komal S. Khan, Faisal Naeem, Muhammad Tariq","doi":"10.1109/mcomstd.0002.2200007","DOIUrl":null,"url":null,"abstract":"In a wireless communication network, the propagation medium has been perceived as a randomly behaving entity between the transmitter and receiver for a long time. However future wireless networks, such as 5G and beyond, rely on Intelligent Reflecting Surfaces (IRS) for promising energy efficiency and spectrum improvement as it enables the proactive control of the wireless channel. In this article, we take a step further and discuss the role of Deep Reinforcement Learning (DRL)-based IRS-assisted network in delivering performance enhancement in a wireless communication network. We provide an insight into DRL followed by the challenges in place for an IRS-assisted wireless network. We then lay out a case study to show the channel processing using two state-of-the-art DRL algorithms, that is, deep Q-network (DQN) and deep deterministic policy gradient (DDPG), in an IRS-assisted network and work on jointly optimizing the transmit beamforming and the IRS phase angles for sum-rate maximization. The sum-rate improvement is shown in reference to the number of reflecting IRS elements. Opportunities in DRL-based IRS-assisted wireless networks are then discussed to showcase the exciting future opportunities in this domain.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"32 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mcomstd.0002.2200007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

In a wireless communication network, the propagation medium has been perceived as a randomly behaving entity between the transmitter and receiver for a long time. However future wireless networks, such as 5G and beyond, rely on Intelligent Reflecting Surfaces (IRS) for promising energy efficiency and spectrum improvement as it enables the proactive control of the wireless channel. In this article, we take a step further and discuss the role of Deep Reinforcement Learning (DRL)-based IRS-assisted network in delivering performance enhancement in a wireless communication network. We provide an insight into DRL followed by the challenges in place for an IRS-assisted wireless network. We then lay out a case study to show the channel processing using two state-of-the-art DRL algorithms, that is, deep Q-network (DQN) and deep deterministic policy gradient (DDPG), in an IRS-assisted network and work on jointly optimizing the transmit beamforming and the IRS phase angles for sum-rate maximization. The sum-rate improvement is shown in reference to the number of reflecting IRS elements. Opportunities in DRL-based IRS-assisted wireless networks are then discussed to showcase the exciting future opportunities in this domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
irs辅助网络的资源分配:一种深度强化学习方法
在无线通信网络中,传播介质长期以来一直被认为是发射器和接收器之间的随机行为实体。然而,未来的无线网络,如5G及以后,依靠智能反射表面(IRS)来实现有希望的能源效率和频谱改进,因为它能够主动控制无线信道。在本文中,我们进一步讨论了基于深度强化学习(DRL)的irs辅助网络在无线通信网络中提供性能增强方面的作用。我们提供了对DRL的见解,然后是irs辅助无线网络面临的挑战。然后,我们提出了一个案例研究,展示了在IRS辅助网络中使用两种最先进的DRL算法(即深度q -网络(DQN)和深度确定性策略梯度(DDPG))进行信道处理,并共同优化发射波束形成和IRS相角以实现和速率最大化。总和率的提高是通过反映IRS元素的数量来显示的。然后讨论了基于drl的irs辅助无线网络的机会,以展示该领域令人兴奋的未来机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
期刊最新文献
IEEE 802.11BB Reference Channel Models For Light Communications Interface To Security Functions: An Overview And Comparison Of I2nsf And Openc2 Further Enhanced Urllc And Industrial IoT Support With Release-17 5g New Radio A Secure Ndn-based Architecture For Electronic Voting In 6g Space-air-ground Integrated Networks For Urllc In Spatial Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1