Predicting the Future Performance of the Planned Seismic Network in Chinese Mainland

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Seismological Research Letters Pub Date : 2023-09-13 DOI:10.1785/0220230102
Jiawei Li, Arnaud Mignan, Didier Sornette, Yu Feng
{"title":"Predicting the Future Performance of the Planned Seismic Network in Chinese Mainland","authors":"Jiawei Li, Arnaud Mignan, Didier Sornette, Yu Feng","doi":"10.1785/0220230102","DOIUrl":null,"url":null,"abstract":"Abstract The China Earthquake Administration has currently launched an ambitious nationwide seismicity monitoring network project that will increase the number of stations from ∼950 to 2000 for the broadband seismic stations used to compile the earthquake catalog. The new network is planned to go online by the end of 2023. For more than half of Chinese mainland, the interstation distance of the broadband seismic network will soon be smaller than 100 km, for 27% smaller than 50 km, and for 6% smaller than 25 km. Of all possible ways to characterize the higher-resolution monitoring of the frequent smaller earthquakes expected inside Chinese mainland, the completeness magnitude (Mc) remains one of the most commonly used. Using the prior model of the Bayesian magnitude of completeness method calibrated on the Chinese earthquake catalog from 1 January 2009 to 26 June 2022, we predict the spatial distribution of Mc for the new network based on the planned network configuration. If almost the entire Chinese mainland is at present covered down to Mc=3.3, this threshold will fall to Mc=2.9 in the near future. This means approximately two times more earthquakes will be recorded in the complete catalog available for statistical analysis per year (for a = 6.77 and b = 0.80 in the Gutenberg–Richter law log10N=a−b·M, in which N represents the number of events of magnitude larger than or equal to M and M≥Mc). Based on the observation that abnormal seismicity as precursors are most likely to be observed at least at three units below the mainshock magnitude, and assuming earthquakes to be potentially damaging at M ≥ 5, the new seismic network shall achieve the goal of 76% coverage for optimal seismic-based earthquake prediction research.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"361 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230102","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The China Earthquake Administration has currently launched an ambitious nationwide seismicity monitoring network project that will increase the number of stations from ∼950 to 2000 for the broadband seismic stations used to compile the earthquake catalog. The new network is planned to go online by the end of 2023. For more than half of Chinese mainland, the interstation distance of the broadband seismic network will soon be smaller than 100 km, for 27% smaller than 50 km, and for 6% smaller than 25 km. Of all possible ways to characterize the higher-resolution monitoring of the frequent smaller earthquakes expected inside Chinese mainland, the completeness magnitude (Mc) remains one of the most commonly used. Using the prior model of the Bayesian magnitude of completeness method calibrated on the Chinese earthquake catalog from 1 January 2009 to 26 June 2022, we predict the spatial distribution of Mc for the new network based on the planned network configuration. If almost the entire Chinese mainland is at present covered down to Mc=3.3, this threshold will fall to Mc=2.9 in the near future. This means approximately two times more earthquakes will be recorded in the complete catalog available for statistical analysis per year (for a = 6.77 and b = 0.80 in the Gutenberg–Richter law log10N=a−b·M, in which N represents the number of events of magnitude larger than or equal to M and M≥Mc). Based on the observation that abnormal seismicity as precursors are most likely to be observed at least at three units below the mainshock magnitude, and assuming earthquakes to be potentially damaging at M ≥ 5, the new seismic network shall achieve the goal of 76% coverage for optimal seismic-based earthquake prediction research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测中国大陆规划地震台网的未来性能
中国地震局目前启动了一项雄心勃勃的全国地震活动监测网项目,该项目将把用于编制地震目录的宽带地震台站的台站数量从950个增加到2000个。新网络计划于2023年底上线。在中国大陆一半以上的地区,宽带地震台网站间距离将很快小于100公里,27%的地区小于50公里,6%的地区小于25公里。在所有可能表征中国大陆频繁的小地震的高分辨率监测的方法中,完整震级(Mc)仍然是最常用的方法之一。利用基于2009年1月1日至2022年6月26日中国地震目录标定的贝叶斯完备性震级先验模型,在规划台网配置的基础上,对新台网Mc的空间分布进行了预测。如果目前几乎整个中国大陆被覆盖到Mc=3.3,那么在不久的将来这个阈值将下降到Mc=2.9。这意味着每年可用于统计分析的完整目录中记录的地震数量将增加约两倍(对于古腾堡-里希特定律log10N=a - b·M中的a = 6.77和b = 0.80,其中N表示大于或等于M且M≥Mc的事件数量)。基于在主震震级以下至少3个震级最可能观测到异常地震活动作为前兆,并假设地震在M≥5级具有潜在破坏性,新的地震台网应实现基于地震的最优地震预报研究覆盖率达到76%的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seismological Research Letters
Seismological Research Letters 地学-地球化学与地球物理
CiteScore
6.60
自引率
12.10%
发文量
239
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Follow the Trace: Becoming a Seismo‐Detective with a Campus‐Based Raspberry Shake Seismometer Nominations for the Next Joyner Lecturer Due 30 June Imaging Urban Hidden Faults with Ambient Noise Recorded by Dense Seismic Arrays Microseismic Event Location with Dual Vertical DAS Arrays: Insights from the FORGE 2022 Stimulation New Empirical Source‐Scaling Laws for Crustal Earthquakes Incorporating Fault Dip and Seismogenic‐Thickness Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1