Lessons Learned about Evaluating Fairness from a Data Challenge to Automatically Score NAEP Reading Items

Maggie Beiting-Parrish, John Whitmer
{"title":"Lessons Learned about Evaluating Fairness from a Data Challenge to Automatically Score NAEP Reading Items","authors":"Maggie Beiting-Parrish, John Whitmer","doi":"10.59863/nkcj9608","DOIUrl":null,"url":null,"abstract":"Natural language processing (NLP) is widely used to predict human scores for open-ended student assessment responses in various content areas (Johnson et al., 2022). Ensuring algorithmic fairness based on student demographic background factors is crucial (Madnani et al., 2017). This study presents a fairness analysis of six top-performing entries from a data challenge involving 20 NAEP reading comprehension items that were initially analyzed for fairness based on race/ethnicity and gender. This study describes additional fairness evaluation including English Language Learner Status (ELLs), Individual Education Plans, and Free/Reduced-Price Lunch. Several items showed lower accuracy for predicted scores, particularly for ELLs. This study recommends considering additional demographic factors in fairness scoring evaluations and that fairness analysis should consider multiple factors and contexts.","PeriodicalId":72586,"journal":{"name":"Chinese/English journal of educational measurement and evaluation","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese/English journal of educational measurement and evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59863/nkcj9608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural language processing (NLP) is widely used to predict human scores for open-ended student assessment responses in various content areas (Johnson et al., 2022). Ensuring algorithmic fairness based on student demographic background factors is crucial (Madnani et al., 2017). This study presents a fairness analysis of six top-performing entries from a data challenge involving 20 NAEP reading comprehension items that were initially analyzed for fairness based on race/ethnicity and gender. This study describes additional fairness evaluation including English Language Learner Status (ELLs), Individual Education Plans, and Free/Reduced-Price Lunch. Several items showed lower accuracy for predicted scores, particularly for ELLs. This study recommends considering additional demographic factors in fairness scoring evaluations and that fairness analysis should consider multiple factors and contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数据挑战中评估公平性以自动评分NAEP阅读项目的经验教训
自然语言处理(NLP)被广泛用于预测各种内容领域开放式学生评估反应的人类分数(Johnson et al., 2022)。确保基于学生人口统计背景因素的算法公平性至关重要(Madnani et al., 2017)。本研究对来自20个NAEP阅读理解项目的数据挑战中的六个表现最好的条目进行了公平性分析,这些项目最初是根据种族/民族和性别进行公平性分析的。本研究描述了额外的公平性评估,包括英语学习者状态(ELLs)、个人教育计划和免费/减价午餐。有几个项目的预测分数的准确性较低,尤其是ELLs。本研究建议在公平评分评估中考虑额外的人口因素,公平分析应考虑多种因素和背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Parametric CD-CAT Item Selection Strategy and Termination Rules Based on Binary Search Algorithm 基于二分搜索算法构建的非参数CD-CAT选题策略及终止规则 An Efficient Non-parametric Item Selection Method for Polytomous Scoring CD-CAT ETS Skills Taxonomy 一种高效的且适用于多级计分CD-CAT非参数选题方法
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1