{"title":"Multimodal deep learning for chronic kidney disease prediction: leveraging feature selection algorithms and ensemble models","authors":"N. J. Subashini, K. Venkatesh","doi":"10.1080/1206212x.2023.2262786","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.KEYWORDS: Chronic kidney diseaseMultimodal deep learningLASSOReliefSMOTEENN Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsN. J. SubashiniN. J. Subashini is a Research scholar in Networking and Communications department, SRM Institute of Science and Technology. Her research interests include Data Mining, Artificial Intelligence, Deep Learning and Machine Learning.K. VenkateshK. Venkatesh is Associate Professor in Networking and Communications department, SRM Institute of Science and Technology. His research interests include Networking, Cloud Computing, Data Mining, Artificial Intelligence, and Machine Learning. He is the Program Coordinator for B. Tech CSE specialization with a focus on Computer Networking. Additionally, he serves as an Alumni Coordinator in the Department of Networking and Communications. He is a Cisco certified CCNA Lead Instructor and Academy Contact for SRM Institute of Science and Technology, formerly known as SRM University, Networking Academy.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2262786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThis research presents an advanced approach to enhance disease diagnosis using imbalanced medical datasets. Feature selection techniques, LASSO and Relief, are applied to identify relevant features from the UCI dataset and missing values are handled appropriately. To address the class imbalance, SMOTEENN is used, creating a new combined dataset with selected features. Three deep learning models, FNNs, LSTMs, and GBMs, are employed and trained on the combined dataset, achieving remarkable accuracy (1.0). Evaluating the models on LASSO and Relief datasets independently, FNN/MLP obtains perfect accuracy, GBM performs well (0.9888 on LASSO and 1.0 on Relief), and LSTM shows good results (0.9663 on LASSO and 1.0 on Relief). This study demonstrates the effectiveness of combining LASSO and Relief for feature selection and highlights the impact of SMOTEENN on model performance. The achieved accuracy with all models on the combined dataset showcases deep learning's potential for accurate disease diagnosis even with imbalanced data, offering promising insights for robust medical diagnosis systems.KEYWORDS: Chronic kidney diseaseMultimodal deep learningLASSOReliefSMOTEENN Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsN. J. SubashiniN. J. Subashini is a Research scholar in Networking and Communications department, SRM Institute of Science and Technology. Her research interests include Data Mining, Artificial Intelligence, Deep Learning and Machine Learning.K. VenkateshK. Venkatesh is Associate Professor in Networking and Communications department, SRM Institute of Science and Technology. His research interests include Networking, Cloud Computing, Data Mining, Artificial Intelligence, and Machine Learning. He is the Program Coordinator for B. Tech CSE specialization with a focus on Computer Networking. Additionally, he serves as an Alumni Coordinator in the Department of Networking and Communications. He is a Cisco certified CCNA Lead Instructor and Academy Contact for SRM Institute of Science and Technology, formerly known as SRM University, Networking Academy.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.