{"title":"Aerodynamic Interaction Characteristics Study of the Ducted Coaxial Propeller for a Novel eVTOL in Hovering","authors":"Junjie Wang, XinFeng Zhang, Jiaxin Lu","doi":"10.1155/2023/8098307","DOIUrl":null,"url":null,"abstract":"The ducted coaxial propeller (DCP) is highly advantageous in the design of eVTOL aircraft due to its safety, compactness, and low noise levels. To study the aerodynamic characteristics of DCP in hovering, a novel eVTOL was used, and a slip grid model was established to solve the three-dimensional unsteady N-S equation. The aerodynamic characteristics of DCP were compared to those of the free coaxial propeller (FCP) and ducted single propeller (DSP) to reveal the interaction mechanism of unsteady flow between the duct and propellers. The results indicate that the duct significantly mitigates the intensity of tip vortexes by changing the characteristics of propeller tip winding, which reduces the corresponding energy loss. Additionally, the static pressure loss is decreased by the reduced radical-induced velocity in the slipstream area. Finally, the induced power loss is reduced by the decreased axial-induced velocity and suppressed wake contraction, resulting in DCP having 39% higher aerodynamic efficiency than FCP and the duct accounting for 41.7% of the total lift. Although DCP generates 1.77 times more lift than DSP, its aerodynamic efficiency is only 91.08% of DSP.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8098307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The ducted coaxial propeller (DCP) is highly advantageous in the design of eVTOL aircraft due to its safety, compactness, and low noise levels. To study the aerodynamic characteristics of DCP in hovering, a novel eVTOL was used, and a slip grid model was established to solve the three-dimensional unsteady N-S equation. The aerodynamic characteristics of DCP were compared to those of the free coaxial propeller (FCP) and ducted single propeller (DSP) to reveal the interaction mechanism of unsteady flow between the duct and propellers. The results indicate that the duct significantly mitigates the intensity of tip vortexes by changing the characteristics of propeller tip winding, which reduces the corresponding energy loss. Additionally, the static pressure loss is decreased by the reduced radical-induced velocity in the slipstream area. Finally, the induced power loss is reduced by the decreased axial-induced velocity and suppressed wake contraction, resulting in DCP having 39% higher aerodynamic efficiency than FCP and the duct accounting for 41.7% of the total lift. Although DCP generates 1.77 times more lift than DSP, its aerodynamic efficiency is only 91.08% of DSP.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.