In Situ Alteration of the Hydro-Mechanical Behaviour of a Compacted Stabilised Expansive Soil

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-09-13 DOI:10.3390/geotechnics3030049
Nicolas Chabrat, Olivier Cuisinier, Farimah Masrouri
{"title":"In Situ Alteration of the Hydro-Mechanical Behaviour of a Compacted Stabilised Expansive Soil","authors":"Nicolas Chabrat, Olivier Cuisinier, Farimah Masrouri","doi":"10.3390/geotechnics3030049","DOIUrl":null,"url":null,"abstract":"This paper assesses the performance of an embankment constructed in 2010 with a stabilised expansive soil. Two types of treatment were employed at construction time: 4% lime and a mix of 2% lime and 3% cement. A sampling campaign was carried out in 2021 to evaluate the long-term performance of the stabilised soil properties. To assess the compressibility of the soil, oedometer tests were carried out on samples from different parts of the embankment. The results were compared to the compression curve of the untreated soil, also sampled in the same embankment. Complementary shrinkage tests were performed to investigate the effect of the treatment on swelling and shrinkage. The obtained results show that the yield stress of the material from the outer part was inferior to 100 kPa, similarly to the yield stress of the untreated soil, demonstrating a strong alteration in the effect of both treatments over time. This alteration was noticeable to a distance of approximately 2 m from the external surface. Beyond this distance, the performance of the soil was comparable to the behaviour of recently treated soil, with yield stresses close to 1000 kPa. These observations, similar for each treatment dosage, raise questions as to the durability of the treatment on the outer part of the backfill.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"22 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geotechnics3030049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper assesses the performance of an embankment constructed in 2010 with a stabilised expansive soil. Two types of treatment were employed at construction time: 4% lime and a mix of 2% lime and 3% cement. A sampling campaign was carried out in 2021 to evaluate the long-term performance of the stabilised soil properties. To assess the compressibility of the soil, oedometer tests were carried out on samples from different parts of the embankment. The results were compared to the compression curve of the untreated soil, also sampled in the same embankment. Complementary shrinkage tests were performed to investigate the effect of the treatment on swelling and shrinkage. The obtained results show that the yield stress of the material from the outer part was inferior to 100 kPa, similarly to the yield stress of the untreated soil, demonstrating a strong alteration in the effect of both treatments over time. This alteration was noticeable to a distance of approximately 2 m from the external surface. Beyond this distance, the performance of the soil was comparable to the behaviour of recently treated soil, with yield stresses close to 1000 kPa. These observations, similar for each treatment dosage, raise questions as to the durability of the treatment on the outer part of the backfill.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压实稳定膨胀土水力学特性的原位变化
本文对2010年建成的稳定膨胀土路堤的性能进行了评价。施工时采用了两种处理方法:4%石灰和2%石灰和3%水泥的混合物。2021年开展了一次抽样活动,以评估稳定土壤特性的长期性能。为了评估土壤的压缩性,对来自路堤不同部分的样品进行了里程表试验。结果与同一路堤中未处理土的压缩曲线进行了比较。补充收缩试验研究了该处理对膨胀和收缩的影响。得到的结果表明,与未处理土壤的屈服应力相似,材料的外部屈服应力低于100 kPa,表明两种处理的效果随着时间的推移发生了强烈的变化。这种变化在距离外表面大约2米的地方都是明显的。在这个距离之外,土壤的性能与最近处理过的土壤相当,屈服应力接近1000千帕。这些观察结果对于每一种处理剂量都是相似的,这就对回填体外部处理的耐久性提出了疑问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1