{"title":"Homogenization of sound-soft and high-contrast acoustic metamaterials in subcritical regimes","authors":"Florian Feppon, H. Ammari","doi":"10.1051/m2an/2022098","DOIUrl":null,"url":null,"abstract":"We propose a quantitative effective medium theory for two types of acoustic metamaterials constituted of a large number N of small heterogeneities of characteristic size s , randomly and independently distributed in a bounded domain. We first consider a “sound-soft” material, in which the total wave field satisfies a Dirichlet boundary condition on the acoustic obstacles. In the “sub-critical” regime sN = O (1), we obtain that the effective medium is governed by a dissipative Lippmann–Schwinger equation which approximates the total field with a relative mean-square error of order O (max(( sN ) 2 N -1/3, N -1/2)). We retrieve the critical size s ~ 1/ N of the literature at which the effects of the obstacles can be modelled by a “strange term” added to the Helmholtz equation. Second, we consider high-contrast acoustic metamaterials, in which each of the N heterogeneities are packets of K inclusions filled with a material of density much lower than the one of the background medium. As the contrast parameter vanishes, δ → 0, the effective medium admits K resonant characteristic sizes ( s i ( δ )) 1≤ i ≤ K and is governed by a Lippmann–Schwinger equation, which is diffusive or dispersive (with negative refractive index) for frequencies ω respectively slightly larger or slightly smaller than the corresponding K resonant frequencies ( ω i ( δ )) 1≤ i ≤ K . These conclusions are obtained under the condition that (i) the resonance is of monopole type, and (ii) lies in the “subcritical regime” where the contrast parameter is small enough, i.e. δ = o ( N −2 )), while the considered frequency is “not too close” to the resonance, i.e. N δ 1/2 = O (|1 - s/s i (δ)|). Our mathematical analysis and the current literature allow us to conjecture that “solidification” phenomena are expected to occur in the “super-critical” regime N δ 1/2 |1 - s/s i (δ)| -1 → + ∞.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2022098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a quantitative effective medium theory for two types of acoustic metamaterials constituted of a large number N of small heterogeneities of characteristic size s , randomly and independently distributed in a bounded domain. We first consider a “sound-soft” material, in which the total wave field satisfies a Dirichlet boundary condition on the acoustic obstacles. In the “sub-critical” regime sN = O (1), we obtain that the effective medium is governed by a dissipative Lippmann–Schwinger equation which approximates the total field with a relative mean-square error of order O (max(( sN ) 2 N -1/3, N -1/2)). We retrieve the critical size s ~ 1/ N of the literature at which the effects of the obstacles can be modelled by a “strange term” added to the Helmholtz equation. Second, we consider high-contrast acoustic metamaterials, in which each of the N heterogeneities are packets of K inclusions filled with a material of density much lower than the one of the background medium. As the contrast parameter vanishes, δ → 0, the effective medium admits K resonant characteristic sizes ( s i ( δ )) 1≤ i ≤ K and is governed by a Lippmann–Schwinger equation, which is diffusive or dispersive (with negative refractive index) for frequencies ω respectively slightly larger or slightly smaller than the corresponding K resonant frequencies ( ω i ( δ )) 1≤ i ≤ K . These conclusions are obtained under the condition that (i) the resonance is of monopole type, and (ii) lies in the “subcritical regime” where the contrast parameter is small enough, i.e. δ = o ( N −2 )), while the considered frequency is “not too close” to the resonance, i.e. N δ 1/2 = O (|1 - s/s i (δ)|). Our mathematical analysis and the current literature allow us to conjecture that “solidification” phenomena are expected to occur in the “super-critical” regime N δ 1/2 |1 - s/s i (δ)| -1 → + ∞.
期刊介绍:
The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains.
Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics.
Long papers are very welcome.
Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.