BIOMECHANICAL ANALYSIS OF AN OPTIMIZED PATIENT-SPECIFIC DENTAL-IMPLANT SCREW IN THE POSTERIOR MANDIBLE

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiali in tehnologije Pub Date : 2023-10-03 DOI:10.17222/mit.2023.907
N. Selvakumar, Balamurugan P.
{"title":"BIOMECHANICAL ANALYSIS OF AN OPTIMIZED PATIENT-SPECIFIC DENTAL-IMPLANT SCREW IN THE POSTERIOR MANDIBLE","authors":"N. Selvakumar, Balamurugan P.","doi":"10.17222/mit.2023.907","DOIUrl":null,"url":null,"abstract":"Implant design developed considerably with the advancement of restorative dentistry. Examining the stress distribution in the cancellous and cortical bones around custom-made implants with different thread-profile models is the study’s objective. The newly designed implants were made with a diameter and length of 4.5 mm and 11.5 mm. The implants were designed the same, but had different thread profiles. Model A is designed with a standard V-shape thread design, and it was compared with the remaining three dental implants (models B, C, and D) having different customized thread-profile designs. The biomechanical characteristics of the four implant models were compared with the use of biomechanical profiling to predict the mechanical performance of various dental-screw models, including the influence of physiological factors. The stress distribution in the D4 bone area of implants with different thread-profile designs under a vertical load of 100 N at 0° and an oblique load of 223.6 N at 25° was examined using ANSYS Workbench. The trabecular and cortical bones comprise the structure of the D4 bone area. Deformation and stress (von Mises) findings were found for the dental implants and bone. While implant models C and D showed less stress distribution in the cortical and cancellous bone, they nonetheless produced outcomes superior to those of the conventional model A underloading. According to the findings, the unique dental implant design lessens the stress concentration in the cortical bone’s neck area. The suggested model C increases the implant’s stability in that region by distributing a low stress over the D4 bone.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"52 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17222/mit.2023.907","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Implant design developed considerably with the advancement of restorative dentistry. Examining the stress distribution in the cancellous and cortical bones around custom-made implants with different thread-profile models is the study’s objective. The newly designed implants were made with a diameter and length of 4.5 mm and 11.5 mm. The implants were designed the same, but had different thread profiles. Model A is designed with a standard V-shape thread design, and it was compared with the remaining three dental implants (models B, C, and D) having different customized thread-profile designs. The biomechanical characteristics of the four implant models were compared with the use of biomechanical profiling to predict the mechanical performance of various dental-screw models, including the influence of physiological factors. The stress distribution in the D4 bone area of implants with different thread-profile designs under a vertical load of 100 N at 0° and an oblique load of 223.6 N at 25° was examined using ANSYS Workbench. The trabecular and cortical bones comprise the structure of the D4 bone area. Deformation and stress (von Mises) findings were found for the dental implants and bone. While implant models C and D showed less stress distribution in the cortical and cancellous bone, they nonetheless produced outcomes superior to those of the conventional model A underloading. According to the findings, the unique dental implant design lessens the stress concentration in the cortical bone’s neck area. The suggested model C increases the implant’s stability in that region by distributing a low stress over the D4 bone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改良后下颌骨患者特异性牙种植螺钉的生物力学分析
随着牙科修复技术的发展,种植体的设计也有了很大的发展。本研究的目的是研究不同螺纹轮廓模型定制植入物周围松质骨和皮质骨的应力分布。新设计的种植体直径和长度分别为4.5 mm和11.5 mm。植入物设计相同,但螺纹轮廓不同。模型A采用标准的v型螺纹设计,并与其余三种不同定制螺纹轮廓设计的种植体(模型B、C、D)进行比较。比较四种种植体模型的生物力学特性,利用生物力学剖面预测各种牙钉模型的力学性能,包括生理因素的影响。采用ANSYS Workbench分析了不同螺纹型设计的种植体在垂直载荷为100 N、倾斜载荷为223.6 N、垂直载荷为25°时D4骨区的应力分布。小梁骨和皮质骨构成D4骨区的结构。牙种植体和骨均出现变形和应力(von Mises)。虽然种植体模型C和D在皮质骨和松质骨中的应力分布较小,但它们的结果优于常规模型A的负荷不足。根据研究结果,独特的种植体设计减少了皮质骨颈部区域的应力集中。建议的C型通过在D4骨上分配低应力来增加植入物在该区域的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
期刊最新文献
SUSTAINABLE AND STRATEGIC SOFT-MAGNETIC Fe-Si-Al ALLOYS PRODUCED BY SECONDARY METALLURGY INFLUENCE OF NICKEL ON THE MICROSTRUCTURAL EVOLUTION AND MECHANICAL PROPERTIES OF LM6-ALLOY-BASED FUNCTIONALLY GRADED COMPOSITE TUBES EFFECT OF ELECTROCHEMICAL PROCESS PARAMETERS ON THE HASTELLOY C-276 ALLOY FOR MACHINING SPEED AND SURFACE-CORROSION FACTOR OPTIMUM DESIGN OF A PERMANENT-MAGNET-BASED SELF-CHARGING DEVICE FOR A SMARTPHONE EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1