None Anand Ronald B, Mohammed Riaz Khan K. N., Kishore G., Lokesh V., Mullaivananathan R. K.
{"title":"INFLUENCE OF THE BUILD AXIS AND ANGLE ON THE PROPERTIES OF 3D PRINTED PLA","authors":"None Anand Ronald B, Mohammed Riaz Khan K. N., Kishore G., Lokesh V., Mullaivananathan R. K.","doi":"10.17222/mit.2023.900","DOIUrl":null,"url":null,"abstract":"Additive manufacturing is one of the sought-after methods for on-demand printing of customized parts. Although it has several advantages, namely design complexity, topologically optimized parts, tool-less and inventory-less manufacturing, etc., it also has challenges in terms of print parameter-dependent mechanical properties. The present paper studies the influence of the build orientation and angle on the tensile and flexural properties of fused-deposition-modelling (FDM) printed polylactic acid (PLA) samples. The samples are printed in different orientations including 0°, 15°, 30°, 45°, 60°, 75° and 90° with respect to the X- and Y-axis. From the tensile and flexural studies, we can infer that the orientation of the print plays a significant role, influencing the tensile and flexural properties. The X-axis build orientation and 75° build angle are preferred owing to better tensile and flexural properties compared to the other angles and Y-orientation.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"128 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17222/mit.2023.900","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing is one of the sought-after methods for on-demand printing of customized parts. Although it has several advantages, namely design complexity, topologically optimized parts, tool-less and inventory-less manufacturing, etc., it also has challenges in terms of print parameter-dependent mechanical properties. The present paper studies the influence of the build orientation and angle on the tensile and flexural properties of fused-deposition-modelling (FDM) printed polylactic acid (PLA) samples. The samples are printed in different orientations including 0°, 15°, 30°, 45°, 60°, 75° and 90° with respect to the X- and Y-axis. From the tensile and flexural studies, we can infer that the orientation of the print plays a significant role, influencing the tensile and flexural properties. The X-axis build orientation and 75° build angle are preferred owing to better tensile and flexural properties compared to the other angles and Y-orientation.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.