{"title":"Multiple paddy disease recognition methods based on deformable transformer attention mechanism in complex scenarios","authors":"Xinyu Zhang, Hang Dong, Liang Gong, Xin Cheng, Zhenghui Ge, Liangchao Guo","doi":"10.1080/1206212x.2023.2263254","DOIUrl":null,"url":null,"abstract":"AbstractPaddy disease recognition presents challenges in the agricultural industry, and existing algorithms struggle to accurately identify diseases in complex scenarios. In this paper, we propose a precise object detection framework to address the challenges of severe overlap, multi-disease detection, morphological irregularities, multi-scale object classification, and complex scenarios in real-world environments in paddy disease detection. The proposed model is based on an improved version of the DEtection TRansformer (Detr) algorithm. The enhanced network architecture fuses multi-scale features by adding a feature fusion module after the backbone network, which is able to retain more original information of the images and greatly improves the detection accuracy; the use of deformable attention module greatly reduces the computational complexity of the model. To evaluate the PDN, a dedicated paddy disease detection dataset with 1200 images is created. Experimental results demonstrate that the proposed model obtained a precision value of 100%, a recall value of 89.3%, F1-score of 94.3%, and a mean average precision (mAP) value of 60.2%. The model outperforms the existing state-of-the-art detection models in detection accuracy.KEYWORDS: Paddy disease recognitionTransformermachine vision detection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported in part by the Jiangsu Basic Science (Natural Science) Research Projects in Higher Education Institutions (No.23KJB460034), Jiangsu province Youth Fund Project (No.BK2023040059), the China Postdoctoral Science Foundation Funded Project (No. 2022M721185), Jiangsu Agriculture Science and Technology Innovation Fund (No. CX(21)3145).Notes on contributorsXinyu ZhangXinyu Zhang is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interest is machine learning.Hang DongDr. Hang Dong is a lecturer at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the deep learning, machine learning, and robotics. Hang Dong is the corresponding author and can be contacted at hdong@yzu.edu.cn.Liang GongLiang Gong was born in Maanshan City, Anhui Province, China on October 26, 1999. He received his bachelor's degree from Anhui Polytechnic University in 2021. He is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interests are machine vision and machine learning.Xin ChengXin Cheng was born in Lian Yungang, China, in 2002.He is currently a student in Yangzhou University.His research interests include computer vision,natural language processing.Zhenghui GeZhenghui Ge is currently an associate professor at Yangzhou University, China. He received his PhD degree from Nanjing University of Aeronautics and Astronautics, China, in 2018. His researches mainly focus on electrochemical machining.Liangchao GuoDr. Liangchao Guo is a distinguished research fellow at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the fabrication and application of gas sensing, and storage devices.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2263254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractPaddy disease recognition presents challenges in the agricultural industry, and existing algorithms struggle to accurately identify diseases in complex scenarios. In this paper, we propose a precise object detection framework to address the challenges of severe overlap, multi-disease detection, morphological irregularities, multi-scale object classification, and complex scenarios in real-world environments in paddy disease detection. The proposed model is based on an improved version of the DEtection TRansformer (Detr) algorithm. The enhanced network architecture fuses multi-scale features by adding a feature fusion module after the backbone network, which is able to retain more original information of the images and greatly improves the detection accuracy; the use of deformable attention module greatly reduces the computational complexity of the model. To evaluate the PDN, a dedicated paddy disease detection dataset with 1200 images is created. Experimental results demonstrate that the proposed model obtained a precision value of 100%, a recall value of 89.3%, F1-score of 94.3%, and a mean average precision (mAP) value of 60.2%. The model outperforms the existing state-of-the-art detection models in detection accuracy.KEYWORDS: Paddy disease recognitionTransformermachine vision detection Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported in part by the Jiangsu Basic Science (Natural Science) Research Projects in Higher Education Institutions (No.23KJB460034), Jiangsu province Youth Fund Project (No.BK2023040059), the China Postdoctoral Science Foundation Funded Project (No. 2022M721185), Jiangsu Agriculture Science and Technology Innovation Fund (No. CX(21)3145).Notes on contributorsXinyu ZhangXinyu Zhang is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interest is machine learning.Hang DongDr. Hang Dong is a lecturer at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the deep learning, machine learning, and robotics. Hang Dong is the corresponding author and can be contacted at hdong@yzu.edu.cn.Liang GongLiang Gong was born in Maanshan City, Anhui Province, China on October 26, 1999. He received his bachelor's degree from Anhui Polytechnic University in 2021. He is currently a master's student in mechanical engineering at the School of Mechanical Engineering, Yangzhou University. His research interests are machine vision and machine learning.Xin ChengXin Cheng was born in Lian Yungang, China, in 2002.He is currently a student in Yangzhou University.His research interests include computer vision,natural language processing.Zhenghui GeZhenghui Ge is currently an associate professor at Yangzhou University, China. He received his PhD degree from Nanjing University of Aeronautics and Astronautics, China, in 2018. His researches mainly focus on electrochemical machining.Liangchao GuoDr. Liangchao Guo is a distinguished research fellow at Yangzhou University. He received his PhD degree in Mechanical Manufacture and Automation from Dalian University of Technology (2019). His research interests include the fabrication and application of gas sensing, and storage devices.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.